导航:首页 > 源码编译 > 性染色体遗传算法

性染色体遗传算法

发布时间:2022-07-10 17:43:54

① 遗传算法 什么是染色体的可行性

1.2 遗传算法的原理 遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的

② 遗传算法

遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因的组合,它决定了个体形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码。初始种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群自然进化一样的后生代种群比前代更加适应环境,末代种群中的最优个体经过编码(decoding),可以作为问题近似最优解。

5.4.1 非线性优化与模型编码

假定有一组未知参量

xi(i=1,2,…,M)

构成模型向量m,它的非线性目标函数为Φ(m)。根据先验知识,对每个未知量都有上下界αi及bi,即αi≤x≤bi,同时可用间隔di把它离散化,使

di=(bii)/N (5.4.1)

于是,所有允许的模型m将被限制在集

xii+jdi(j=0,1,…,N) (5.4.2)

之内。

通常目标泛函(如经济学中的成本函数)表示观测函数与某种期望模型的失拟,因此非线性优化问题即为在上述限制的模型中求使Φ(m)极小的模型。对少数要求拟合最佳的问题,求目标函数的极大与失拟函数求极小是一致的。对于地球物理问题,通常要进行杀重离散化。首先,地球模型一般用连续函数表示,反演时要离散化为参数集才能用于计算。有时,也将未知函数展开成已知基函数的集,用其系数作为离散化的参数集xi,第二次离散化的需要是因为每一个未知参数在其变化范围内再次被离散化,以使离散模型空间最终包含着有限个非线性优化可选择的模型,其个数为

地球物理数据处理教程

其中M为未知参数xi的个数。由此式可见,K决定于每个参数离散化的间隔di及其变化范围(αi,bi),在大多数情况下它们只能靠先验知识来选择。

一般而言,优化问题非线性化的程度越高,逐次线性化的方法越不稳定,而对蒙特卡洛法却没有影响,因为此法从有限模型空间中随机地挑选新模型并计算其目标函数 Φ(m)。遗传算法与此不同的是同时计算一组模型(开始时是随机地选择的),然后把它进行二进制编码,并通过繁殖、杂交和变异产生一组新模型进一步有限的模型空间搜索。编码的方法可有多种,下面举最简单的例说明之,对于有符号的地球物理参数反演时的编码方式一般要更复杂些。

假设地球为有三个水平层的层次模型,含层底界面深度hj(j=1,2,3)及层速度vj(j=1,2,3)这两组参数。如某个模型的参数值为(十进制):

h1=6,h2=18,h3=28,单位为10m

v1=6,v2=18,v3=28,单位为 hm/s

按正常的二进制编码法它们可分别用以下字符串表示为:

地球物理数据处理教程

为了减少字节,这种编码方式改变了惯用的单位制,只是按精度要求(深度为10m,波速为hm/s)来规定参数的码值,同时也意味着模型空间离散化间距di都规格化为一个单位(即10m,或hm/s)。当然,在此编码的基础上,还可以写出多种新的编码字符串。例如,三参数值的对应字节顺序重排,就可组成以下新的二进制码串:

地球物理数据处理教程

模型参数的二进制编码是一种数学上的抽象,通过编码把具体的非线性问题和生物演化过程联系了起来,因为这时形成的编码字符串就相当于一组遗传基因的密码。不仅是二进制编码,十进制编码也可直接用于遗传算法。根据生物系统传代过程的规律,这些基因信息将在繁殖中传到下一带,而下一代将按照“适者生存”的原则决定种属的发展和消亡,而优化准则或目标函数就起到了决定“适者生存”的作用,即保留失拟较小的新模型,而放弃失拟大的模型。在传带过程中用编码表示的基因部分地交合和变异,即字符串中的一些子串被保留,有的改变,以使传代的过程向优化的目标演化。总的来说,遗传算法可分为三步:繁殖、杂交和变异。其具体实现过程见图5.8。

图5.8 遗传算法实现过程

5.4.2 遗传算法在地震反演中的应用

以地震走时反演为例,根据最小二乘准则使合成记录与实测数据的拟合差取极小,目标函数可取为

地球物理数据处理教程

式中:Ti,0为观测资料中提取出的地震走时;Ti,s为合成地震或射线追踪算出的地震走时;ΔT为所有合成地震走时的平均值;NA为合成地震数据的个数,它可以少于实测Ti,0的个数,因为在射线追踪时有阴影区存在,不一定能算出合成数据Tj,0。利用射线追踪计算走时的方法很多,参见上一章。对于少数几个波速为常数的水平层,走时反演的参数编码方法可参照上一节介绍的分别对深度和速度编码方法,二进制码的字符串位数1不会太大。要注意的是由深度定出的字符串符合数值由浅到深增大的规律,这一约束条件不应在杂交和传代过程中破坏。这种不等式的约束(h1<h2<h3…)在遗传算法中是容易实现的。

对于波场反演,较方便的做法是将地球介质作等间距的划分。例如,将水平层状介质细分为100个等厚度的水平层。在上地壳可假定波速小于6400 m/s(相当于解空间的硬约束),而波速空间距为100m/s,则可将波速用100m/s为单位,每层用6位二进制字符串表示波速,地层模型总共用600位二进制字符串表示(l=600)。初始模型可随机地选取24~192个,然后通过繁殖杂交与变异。杂交概率在0.5~1.0之间,变异概率小于0.01。目标函数(即失拟方程)在频率域可表示为

地球物理数据处理教程

式中:P0(ωk,vj)为实测地震道的频谱;ωk为角频率;vj为第j层的波速;Ps(ωk,vj)为相应的合成地震道;A(ωk)为地震仪及检波器的频率滤波器,例如,可取

A(ω)=sinC4(ω/ωN) (5.4.6)

式中ωN为Nyquist频率,即ωN=π/Δt,Δt为时间采样率。参数C为振幅拟合因子,它起到合成与观测记录之间幅度上匹配的作用。C的计算常用地震道的包络函数的平均比值。例如,设E[]为波动信号的包络函数,可令

地球物理数据处理教程

式中:tmax为包络极大值的对应时间;J为总层数。包络函数可通过复数道的模拟取得。

用遗传算法作波速反演时失拟最小的模型将一直保存到迭代停止。什么时候停止传代还没有理论上可计算的好办法,一般要显示解空间的搜索范围及局部密度,以此来判断是否可以停止传代。值得指出的是,由(5.4.4)和(5.4.5)式给出的目标函数对于有误差的数据是有问题的,反演的目标不是追求对有误差数据的完美拟合,而是要求出准确而且分辨率最高的解估计。

遗传算法在执行中可能出现两类问题。其一称为“早熟”问题,即在传代之初就随机地选中了比较好的模型,它在传代中起主导作用,而使其后的计算因散不开而白白浪费。通常,增加Q值可以改善这种情况。另一类问题正相反,即传相当多代后仍然找不到一个特别好的解估计,即可能有几百个算出的目标函数值都大同小异。这时,最好修改目标函数的比例因子(即(5.4.5)式的分母),以使繁殖概率Ps的变化范围加大。

对于高维地震模型的反演,由于参数太多,相应的模型字符串太长,目前用遗传算法作反演的计算成本还嫌太高。实际上,为了加快计算,不仅要改进反演技巧和传代的控制技术,而且还要大幅度提高正演计算的速度,避免对遗传算法大量的计算花费在正演合成上。

③ 遗传算法求解

遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。

一、遗传算法的特点

1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。

这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。

2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。

由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。

3.遗传算法有极强的容错能力

遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。

4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。

这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。

5.遗传算法具有隐含的并行性

遗传算法的基础理论是图式定理。它的有关内容如下:

(1)图式(Schema)概念

一个基因串用符号集{0,1,*}表示,则称为一个因式;其中*可以是0或1。例如:H=1x x 0 x x是一个图式。

(2)图式的阶和长度

图式中0和1的个数称为图式的阶,并用0(H)表示。图式中第1位数字和最后位数字间的距离称为图式的长度,并用δ(H)表示。对于图式H=1x x0x x,有0(H)=2,δ(H)=4。

(3)Holland图式定理

低阶,短长度的图式在群体遗传过程中将会按指数规律增加。当群体的大小为n时,每代处理的图式数目为0(n3)。

遗传算法这种处理能力称为隐含并行性(Implicit Parallelism)。它说明遗传算法其内在具有并行处理的特质。

二、遗传算法的应用关键

遗传算法在应用中最关键的问题有如下3个

1.串的编码方式

这本质是问题编码。一般把问题的各种参数用二进制编码,构成子串;然后把子串拼接构成“染色体”串。串长度及编码形式对算法收敛影响极大。

2.适应函数的确定

适应函数(fitness function)也称对象函数(object function),这是问题求解品质的测量函数;往往也称为问题的“环境”。一般可以把问题的模型函数作为对象函数;但有时需要另行构造。

3.遗传算法自身参数设定

遗传算法自身参数有3个,即群体大小n、交叉概率Pc和变异概率Pm。

群体大小n太小时难以求出最优解,太大则增长收敛时间。一般n=30-160。交叉概率Pc太小时难以向前搜索,太大则容易破坏高适应值的结构。一般取Pc=0.25-0.75。变异概率Pm太小时难以产生新的基因结构,太大使遗传算法成了单纯的随机搜索。一般取Pm=0.01—0.2。

三、遗传算法在神经网络中的应用

遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。

1.遗传算法在网络学习中的应用

在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用

(1)学习规则的优化

用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。

(2)网络权系数的优化

用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。

2.遗传算法在网络设计中的应用

用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种:

(1)直接编码法

这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。

(2)参数化编码法

参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。

(3)繁衍生长法

这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。

3.遗传算法在网络分析中的应用

遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。

遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。

④ 什么是遗传算法

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:
遗传算法式中x为决策
变量,式2-1为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
遗传算法的基本运算过程如下:
a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

⑤ 关于遗传算法

遗传算法(Genetic Algorithm,简称GA)是美国 Michigan大学的 John Golland提出的一种建立在自然选择和群体遗传学机理基础上的随机、迭代、进化、具有广泛适用性的搜索方法。现在已被广泛用于学习、优化、自适应等问题中。图4-1 给出了 GA搜索过程的直观描述。图中曲线对应一个具有复杂搜索空间(多峰空间)的问题。纵坐标表示适应度函数(目标函数),其值越大相应的解越优。横坐标表示搜索点。显然,用解析方法求解该目标函数是困难的。采用 GA时,首先随机挑选若干个搜索点,然后分别从这些搜索点开始并行搜索。在搜索过程中,仅靠适应度来反复指导和执行 GA 搜索。在经过若干代的进化后,搜索点后都具有较高的适应度并接近最优解。

一个简单GA由复制、杂交和变异三个遗传算子组成:

图4-2 常规遗传算法流程图

⑥ 遗传算法的一般算法

遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法: 繁殖(包括子代突变)
带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。 各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数。 这个函数是计算个体在群体中被使用的概率。

⑦ 请问什么是遗传算法,并给两个例子

遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借
用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性
的提高。这一点体现了自然界中"物竞天择、适者生存"进化过程。1962年Holland教授首次
提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方
面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构
和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续
空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。

一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行:

(1) 对待解决问题进行编码;
(2) 随机初始化群体X(0):=(x1, x2, … xn);
(3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好
坏;
(4) 应用选择算子产生中间代Xr(t);
(5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限
个体的覆盖面,体现全局搜索的思想;
(6) t:=t+1;如果不满足终止条件继续(3)。
GA中最常用的算子有如下几种:
(1) 选择算子(selection/reproction): 选择算子从群体中按某一概率成对选择个
体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulett
e wheel)模型。
(2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉
,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。
(3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对
二值基因链(0,1编码)来说即是取反。
上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的
某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度
及结果有很大的影响,应视具体问题选取不同的值。
GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继
承为我们提供了这一可能。
定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TP
opulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实
例,可以在TSGA类上派生,并定义新的操作。

TPopulation类包含两个重要过程:
FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操
作在用户类中实现。
Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好
个体fmax、最坏个体fmin等。

TSGA类在TPopulation类的基础上派生,以GA的系统参数为构造函数的参数,它有4个
重要的成员函数:
Select: 选择算子,基本的选择策略采用轮盘赌模型(如图2)。轮盘经任意旋转停止
后指针所指向区域被选中,所以fi值大的被选中的概率就大。
Crossover: 交叉算子,以概率Pc在两基因链上的随机位置交换子串。
Mutation: 变异算子,以概率Pm对基因链上每一个基因进行随机干扰(取反)。
Generate: 产生下代,包括了评价、统计、选择、交叉、变异等全部过程,每运行一
次,产生新的一代。

SGA的结构及类定义如下(用C++编写):
[code] typedef char ALLELE; // 基因类型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 个体定义

class TPopulation{ // 群体类定义
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;

INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;

TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 评价函数
virtual void Statistics(); // 统计函数
};

class TSGA : public TPopulation{ // TSGA类派生于群体类
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation

TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 产生新的一代
};
用户GA类定义如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]

由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况
也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc=
0.6。变异概率太大,会导致不稳定。

参考文献
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine

Learning. Addison-Wesley, Reading, MA, 1989
● 陈根社、陈新海,"遗传算法的研究与进展",《信息与控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"采用遗传算法自学习模型控制规则",《自动化理论、技术与应
用》,中国自动化学会 第九届青年学术年会论文集,1993, PP233-238
● 方建安、邵世煌,"采用遗传算法学习的神经网络控制器",《控制与决策》,199
3,8(3), PP208-212
● 苏素珍、土屋喜一,"使用遗传算法的迷宫学习",《机器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993

⑧ 遗传算法的核心是什么!

遗传操作的交叉算子。

在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。

交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。

(8)性染色体遗传算法扩展阅读

评估编码策略常采用以下3个规范:

a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。

b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。

c)非冗余性(nonrendancy):染色体和候选解一一对应。

目前的几种常用的编码技术有二进制编码,浮点数编码,字符编码,变成编码等。

而二进制编码是目前遗传算法中最常用的编码方法。即是由二进制字符集{0,1}产生通常的0,1字符串来表示问题空间的候选解。

阅读全文

与性染色体遗传算法相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:579
python员工信息登记表 浏览:377
高中美术pdf 浏览:161
java实现排列 浏览:513
javavector的用法 浏览:982
osi实现加密的三层 浏览:233
大众宝来原厂中控如何安装app 浏览:915
linux内核根文件系统 浏览:242
3d的命令面板不见了 浏览:526
武汉理工大学服务器ip地址 浏览:148
亚马逊云服务器登录 浏览:524
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:930
php支持curlhttps 浏览:143
新预算法责任 浏览:444
服务器如何处理5万人同时在线 浏览:250
哈夫曼编码数据压缩 浏览:426
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:617
解压手机软件触屏 浏览:350