㈠ (关于P图)这张图效果如何做出来
字体不大清楚(汉鼎简新艺体、华康超特明体有点类似的效果),效果加了外发光(颜色可以自己选),然后把字体图层的填充调低点,字体应该是最上面的图层,每个字一个图层,让自己放位置
光圈和亮晶晶的应该是高光素材(这里大概是肥皂泡的素材加一个紫红色渐变纹理的素材)然后改一下素材的图层模式(叠加、柔光之类的,具体没有图可以试,不大清楚),一点点的亮光也可以用笔刷(有星光笔刷可以下载)
边可以加个蒙板,然后用粗糙样子的笔刷弄出来(其实直接用这个形状的橡皮擦掉也行,字体图层放最上面就成),PS原本应该有带这种形状的笔刷
【完】
㈡ 关于宇宙的问题
宇宙
universe;cosmos
宇宙的诞生
我们现在观察到的宇宙,其边界大约有100多亿光年。它由众多的星系所组成。地球是太阳系的一颗普通行星,而太阳系是银河系中一颗普通恒星。我们所观察到恒星、行星、慧星、星系等是怎么产生的呢?
宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个很小、温度极高、密度极大的原始火球。在150亿年到200亿年前,原始火球发生大爆炸,从此开始了我们所在的宇宙的诞生史。
宇宙原始大爆炸后0.01秒,宇宙的温度大约为1000亿度。物质存在的主要形式是电子、光子、中微子。以后,物质迅速扩散,温度迅速降低。大爆炸后1秒钟,下降到100亿度。大爆炸后14秒,温度约30亿度。35秒后,为3亿度,化学元素开始形成。温度不断下降,原子不断形成。宇宙间弥漫着气体云。他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。
物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往称作可观测宇宙、我们的宇宙,现在相当于天文学中的“总星系”。
2003年2月份,美国国家航空航天局曾向全世界公布他们有关宇宙年龄的研究成果。根据其公布的资料显示,宇宙年龄应该为137亿岁。2003年11月份,国际天体物理学研究小组宣称,宇宙的确切年龄应该是141亿岁。地球的形成大约是距今45亿年。
词源考察 在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。“宙”包括过去、现在、白天、黑夜,即一切不同的具体时间。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“干坤”、“六合”等,但这些概念仅指宇宙的空间方面。《管子》的“宙合”一词,“宙”指时间,“合”(即“六合”)指空间,与“宇宙”概念最接近。
在西方,宇宙这个词在英语中叫cosmos,在俄语中叫кocMoc ,在德语中叫kosmos ,在法语中叫cosmos。它们都源自希腊语的κoσμoζ,古希腊人认为宇宙的创生乃是从浑沌中产生出秩序来,κoσμoζ其原意就是秩序。但在英语中更经常用来表示“宇宙”的词是universe。此词与universitas有关。在中世纪,人们把沿着同一方向朝同一目标共同行动的一群人称为universitas。在最广泛的意义上,universitas 又指一切现成的东西所构成的统一整体,那就是universe,即宇宙。universe和cosmos常常表示相同的意义,所不同的是,前者强调的是物质现象的总和,而后者则强调整体宇宙的结构或构造。
宇宙观念的发展 宇宙结构观念的发展 远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造作了幼稚的推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的。公元前7世纪 ,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其中央则是高山。古埃及人把宇宙想象成以天为盒盖、大地为盒底的大盒子,大地的中央则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前7世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。
最早认识到大地是球形的是古希腊人。公元前6世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和我们所居住的大地都是球形的。这一观念为后来许多古希腊学者所继承,但直到1519~1522年,葡萄牙的F.麦哲伦率领探险队完成了第一次环球航行后 ,地球是球形的观念才最终证实。
公元2世纪,C.托勒密提出了一个完整的地心说。这一学说认为地球在宇宙的中央安然不动,月亮、太阳和诸行星以及最外层的恒星天都在以不同速度绕着地球旋转。为了说明行星视运动的不均匀性,他还认为行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。地心说曾在欧洲流传了1000多年。1543年,N.哥白尼提出科学的日心说,认为太阳位于宇宙中心,而地球则是一颗沿圆轨道绕太阳公转的普通行星。1609年,J.开普勒揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了哥白尼的日心说,同年,G.伽利略则率先用望远镜观测天空,用大量观测事实证实了日心说的正确性。1687年,I.牛顿提出了万有引力定律,深刻揭示了行星绕太阳运动的力学原因,使日心说有了牢固的力学基础。在这以后,人们逐渐建立起了科学的太阳系概念。
在哥白尼的宇宙图像中,恒星只是位于最外层恒星天上的光点。1584年,G.布鲁诺大胆取消了这层恒星天,认为恒星都是遥远的太阳。18世纪上半叶,由于E.哈雷对恒星自行的发展和J.布拉得雷对恒星遥远距离的科学估计,布鲁诺的推测得到了越来越多人的赞同。18世纪中叶,T.赖特、I.康德和J.H.朗伯推测说,布满全天的恒星和银河构成了一个巨大的天体系统。F.W.赫歇尔首创用取样统计的方法,用望远镜数出了天空中大量选定区域的星数以及亮星与暗星的比例,1785年首先获得了一幅扁而平、轮廓参差、太阳居中的银河系结构图,从而奠定了银河系概念的基础。在此后一个半世纪中,H.沙普利发现了太阳不在银河系中心、J.H.奥尔特发现了银河系的自转和旋臂,以及许多人对银河系直径、厚度的测定,科学的银河系概念才最终确立。
18世纪中叶,康德等人还提出,在整个宇宙中,存在着无数像我们的天体系统(指银河系)那样的天体系统。而当时看去呈云雾状的“星云”很可能正是这样的天体系统。此后经历了长达170年的曲折的探索历程,直到1924年,才由E.P.哈勃用造父视差法测仙女座大星云等的距离确认了河外星系的存在。
近半个世纪,人们通过对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达200亿光年的宇宙深处。
宇宙演化观念的发展 在中国,早在西汉时期,《淮南子·俶真训》指出:“有始者,有未始有有始者,有未始有夫未始有有始者”,认为世界有它的开辟之时,有它的开辟以前的时期,也有它的开辟以前的以前的时期。《淮南子·天文训》中还具体勾画了世界从无形的物质状态到浑沌状态再到天地万物生成演变的过程。在古希腊,也存在着类似的见解。例如留基伯就提出,由于原子在空虚的空间中作旋涡运动,结果轻的物质逃逸到外部的虚空,而其余的物质则构成了球形的天体,从而形成了我们的世界。
太阳系概念确立以后,人们开始从科学的角度来探讨太阳系的起源。1644年,R.笛卡尔提出了太阳系起源的旋涡说;1745年,G.L.L.布丰提出了一个因大彗星与太阳掠碰导致形成行星系统的太阳系起源说;1755年和1796年,康德和拉普拉斯则各自提出了太阳系起源的星云说。现代探讨太阳系起源z的新星云说正是在康德-拉普拉斯星云说的基础上发展起来。
1911年,E.赫茨普龙建立了第一幅银河星团的颜色星等图;1913年,H.N.罗素则绘出了恒星的光谱-光度图,即赫罗图。罗素在获得此图后便提出了一个恒星从红巨星开始,先收缩进入主序,后沿主序下滑,最终成为红矮星的恒星演化学说。1924年 ,A.S.爱丁顿提出了恒星的质光关系;1937~1939年,C.F.魏茨泽克和贝特揭示了恒星的能源来自于氢聚变为氦的原子核反应。这两个发现导致了罗素理论被否定,并导致了科学的恒星演化理论的诞生。对于星系起源的研究,起步较迟,目前普遍认为,它是我们的宇宙开始形成的后期由原星系演化而来的。
1917年,A.阿尔伯特·爱因斯坦运用他刚创立的广义相对论建立了一个“静态、有限、无界”的宇宙模型,奠定了现代宇宙学的基础。1922年,G.D.弗里德曼发现,根据阿尔伯特·爱因斯坦的场方程,宇宙不一定是静态的,它可以是膨胀的,也可以是振荡的。前者对应于开放的宇宙,后者对应于闭合的宇宙。1927年,G.勒梅特也提出了一个膨胀宇宙模型.1929年 哈勃发现了星系红移与它的距离成正比,建立了着名的哈勃定律。这一发现是对膨胀宇宙模型的有力支持。20世纪中叶,G.伽莫夫等人提出了热大爆炸宇宙模型,他们还预言,根据这一模型,应能观测到宇宙空间目前残存着温度很低的背景辐射。1965年微波背景辐射的发现证实了伽莫夫等人的预言。从此,许多人把大爆炸宇宙模型看成标准宇宙模型。1980年,美国的古斯在热大爆炸宇宙模型的 基础上又进一步提出了暴涨宇宙模型。这一模型可以解释目前已知的大多数重要观测事实。
宇宙图景 当代天文学的研究成果表明,宇宙是有层次结构的、物质形态多样的、不断运动发展的天体系统。
层次结构 行星是最基本的天体系统。太阳系中共有九大行星:水星 金星 地球 火星 木星 土星 天王星 海王星和冥王星。除水星和金星外,其他行星都有卫星绕其运转,地球有一个卫星 月球,土星的卫星最多,已确认的有17颗。行星 小行星 彗星和流星体都围绕中心天体太阳运转,构成太阳系。太阳占太阳系总质量的99.86%,其直径约140万千米,最大的行星木星的直径约14万千米。太阳系的大小约120亿千米。有证据表明,太阳系外也存在其他行星系统。2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系中大部分恒星和星际物质集中在一个扁球状的空间内,从侧面看很像一个“铁饼”,正面看去�则呈旋涡状。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约3万光年。银河系外还有许多类似的天体系统,称为河外星系,常简称星系。现已观测到大约有10亿个。星系也聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。若干星系团集聚在一起构成更大、更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。本星系群和其附近的约50个星系团构成的超星系团叫做本超星系团。目前天文观测范围已经扩展到200亿光年的广阔空间,它称为总星系。
多样性 天体千差万别,宇宙物质千姿百态。太阳系天体中,水星、金星表面温度约达700K,遥远的冥王星向日面的温度最高时也只有50K;金星表面笼罩着浓密的二氧化碳大气和硫酸云雾,气压约50个大气压,水星、火星表面大气却极其稀薄,水星的大气压甚至小于2×10-9毫巴;类地行星(水星、金星、火星)都有一个固体表面,类木行星却是一个流体行星;土星的平均密度为0.70克/厘米3,比水的密度还小,木星、天王星、海王星的平均密 度略大于水的密度,而水星、金星、地球等的密度则达到水的密度的5倍以上;多数行星都是顺向自转,而金星是逆向自转;地球表面生机盎然,其他行星则是空寂荒凉的世界。
太阳在恒星世界中是颗普遍而又典型的恒星。已经发现,有些红巨星的直径为太阳直径的几千倍。中子星直径只有太阳的几万分之一;超巨星的光度高达太阳光度的数百万倍,白矮星光度却不到太阳的几十万分之一。红超巨星的物质密度小到只有水的密度的百万分之一,而白矮星、中子星的密度分别可高达水的密度的十万倍和百万亿倍。太阳的表面温度约为6000K,O型星表面温度达30000K,而红外星的表面温度只有约600K。太阳的普遍磁场强度平均为1×10-4特斯拉,有些磁白矮星的磁场通常为几千、几万高斯(1高斯=10-4特斯拉),而脉冲星的磁场强度可高达十万亿高斯。有些恒星光度基本不变,有些恒星光度在不断变化,称变星。有的变星光度变化是有周期的,周期从1小时到几百天不等。有些变星的光度变化是突发性的,其中变化最剧烈的是新星和超新星,在几天内,其光度可增加几万倍甚至上亿倍。
恒星在空间常常聚集成双星或三五成群的聚星,它们可能占恒星总数的1/3。也有由几十、几百乃至几十万个恒星聚在一起的星团。宇宙物质除了以密集形式形成恒星、行星等之外,还以弥漫的形式形成星际物质。星际物质包括星际气体和尘埃,平均每立方厘米只有一个原子,其中高度密集的地方形成形状各异的各种星云。宇宙中除发出可见光的恒星、星云等天体外,还存在紫外天体、红外天体、X射线源、γ射线源以及射电源。
星系按形态可分为椭圆星系、旋涡星系、棒旋星系、透镜星系和不规则星系等类型。60年代又发现许多正在经历着爆炸过程或正在抛射巨量物质的河外天体,统称为活动星系,其中包括各种射电星系、塞佛特星系、N型星系、马卡良星系、蝎虎座BL型天体,以及类星体等等。许多星系核有规模巨大的活动:速度达几千千米/秒的气流,总能量达1055焦耳的能量输出,规模巨大的物质和粒子抛射,强烈的光变等等。在宇宙中有种种极端物理状态:超高温、超高压、超高密、超真空、超强磁场、超高速运动、超高速自转、超大尺度时间和空间、超流、超导等。为我们认识客观物质世界提供了理想的实验环境。
运动和发展 宇宙天体处于永恒的运动和发展之中,天体的运动形式多种多样,例如自转、各自的空间运动(本动)、绕系统中心的公转以及参与整个天体系统的运动等。月球一方面自转一方面围绕地球运转,同时又跟随地球一起围绕太阳运转。太阳一方面自转,一方面又向着武仙座方向以20千米/秒的速度运动,同时又带着整个太阳系以250千米/秒的速度绕银河系中心运转,运转一周约需2.2亿年。银河系也在自转,同时也有相对于邻近的星系的运动。本超星系团也可能在膨胀和自转。总星系也在膨胀。
现代天文学已经揭示了天体的起源和演化的历程。当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见太阳系起源)。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段。星系的起源和宇宙起源密切相关,流行的看法是:在宇宙发生热大爆炸后40万年,温度降到4000K,宇宙从辐射为主时期转化为物质为主时期,这时或由于密度涨落形成的引力不稳定性,或由于宇宙湍流的作用而逐步形成原星系,然后再演化为星系团和星系。热大爆炸宇宙模型描绘了我们的宇宙的起源和演化史:我们的宇宙起源于200亿年前的一次大爆炸,当时温度极高、密度极大。随着宇宙的膨胀,它经历了从热到冷、从密到稀、从辐射为主时期到物质为主时期的演变过程,直至10~20亿年前,才进入大规模形成星系的阶段,此后逐渐形成了我们当今看到的宇宙。1980年提出的暴涨宇宙模型则是热大爆炸宇宙模型的补充。它认为在宇宙极早期,在我们的宇宙诞生后约10-36秒的时候,它曾经历了一个暴涨阶段。
哲学分析 宇宙概念 有些宇宙学家认为,我们的宇宙是唯一的宇宙;大爆炸不是在宇宙空间的哪一点爆炸,而是整个宇宙自身的爆炸。但是,新提出的暴涨模型表明,我们的宇宙仅是整个暴涨区域的非常小的一部分,暴涨后的区域尺度要大于1026厘米,而那时我们的宇宙只有10厘米。还有可能这个暴涨区域是一个更大的始于无规则混沌状态的物质体系的一部分。这种情况恰如科学史上人类的认识从太阳系宇宙扩展到星系宇宙,再扩展到大尺度宇宙那样,今天的科学又正在努力把人类的认识进一步向某种探索中的“暴涨宇宙”、“无规则的混沌宇宙”推移。我们的宇宙不是唯一的宇宙,而是某种更大的物质体系的一部分,大爆炸不是整个宇宙自身的爆炸,而是那个更大物质体系的一部分的爆炸。因此,有必要区分哲学和自然科学两个不同层次的宇宙概念。哲学宇宙概念所反映的是无限多样、永恒发展的物质世界;自然科学宇宙概念所涉及的则是人类在一定时代观测所及的最大天体系统。两种宇宙概念之间的关系是一般和个别的关系。随着自然科学宇宙概念的发展,人们将逐步深化和接近对无限宇宙的认识。弄清两种宇宙概念的区别和联系,对于坚持马克思主义的宇宙无限论,反对宇宙有限论、神创论、机械论、不可知论、哲学代替论和取消论,都有积极意义。
宇宙的创生 有些宇宙学家认为,暴涨模型最彻底的改革也许是观测宇宙中所有的物质和能量从无中产生的观点,这种观点之所以在以前不能为人们接受,是因为存在着许多守恒定律,特别是重子数守恒和能量守恒。但随着大统一理论的发展,重子数有可能是不守恒的,而宇宙中的引力能可粗略地说是负的,并精确地抵消非引力能,总能量为零。因此就不存在已知的守恒律阻止观测宇宙从无中演化出来的问题。这种“无中生有”的观点在哲学上包括两个方面:①本体论方面。如果认为“无”是绝对的虚无,则是错误的。这不仅违反了人类已知的科学实践,而且也违反了暴涨模型本身。按照该模型,我们所研究的观测宇宙仅仅是整个暴涨区域的很小的一部分,在观测宇宙之外并不是绝对的“无”。现在观测宇宙的物质是从假真空状态释放出来的能量转化而来的,这种真空能恰恰是一种特殊的物质和能量形式,并不是创生于绝对的“无”。如果进一步说这种真空能起源于“无”,因而整个观测宇宙归根到底起源于“无”,那么这个“无”也只能是一种未知的物质和能量形式。②认识论和方法论方面。暴涨模型所涉及的宇宙概念是自然科学的宇宙概念。这个宇宙不论多么巨大,作为一个有限的物质体系 ,也有其产生、发展和灭亡的历史。暴涨模型把传统的大爆炸宇宙学与大统一理论结合起来,认为观测宇宙中的物质与能量形式不是永恒的,应研究它们的起源。它把“无”作为一种未知的物质和能量形式,把“无”和“有”作为一对逻辑范畴,探讨我们的宇宙如何从“无”——未知的物质和能量形式,转化为“有”——已知的物质和能量形式,这在认识论和方法论上有一定意义。
时空起源 有些人认为,时间和空间不是永恒的,而是从没有时间和没有空间的状态产生的。根据现有的物理理论,在小于10-43秒和10-33厘米的范围内,就没有一个“钟”和一把“尺子”能加以测量,因此时间和空间概念失效了,是一个没有时间和空间的物理世界。这种观点提出已知的时空形式有其适用的界限是完全正确的。正像历史上的牛顿时空观发展到相对论时空观那样,今天随着科学实践的发展也必然要求建立新的时空观。由于在大爆炸后10-43秒以内,广义相对论失效,必须考虑引力的量子效应,因此有些人试图通过时空的量子化的途径来探讨已知的时空形式的起源。这些工作都是有益的,但我们决不能因为人类时空观念的发展或者在现有的科学技术水平上无法度量新的时空形式,而否定作为物质存在形式的时间、空间的客观存在。
人和宇宙 从本世纪60年代开始,由于人择原理的提出和讨论,出现了人类存在和宇宙产生的关系问题。人择原理认为 ,可能存在许多具有不同物理参数和初始条件的宇宙,但只有物理参数和初始条件取特定值的宇宙才能演化出人类,因此我们只能看到一种允许人类存在的宇宙。人择原理用人类的存在去约束过去可能有的初始条件和物理定律,减少它们的任意性,使一些宇宙学现象得到解释,这在科学方法论上有一定的意义。但有人提出,宇宙的产生依赖于作为观测者的人类的存在。这种观点值得商榷。现在根据暴涨模型,那些被传统大爆炸模型作为初始条件的状态,有可能从极早期宇宙的演化中产生出来,而且宇宙的演化几乎变得与初始条件的一些细节无关。这样就使上述那种利用初始条件的困难来否定宇宙客观实在性的观点失去了基础。但有些人认为,由于暴涨引起的巨大距离尺度,使得从整体上去观测宇宙的结构成为不可能。这种担心有其理由,但如果暴涨模型正确的话,随着科学实践的发展,一定有可能突破人类认识上的困难。
宇宙
宇宙,是我们所在的空间,“宇”字的本义就是指“上下四方”。
地球是我们的家园;
而地球仅是太阳系的第三颗行星;
而太阳系又仅仅定居于银河系巨大旋臂的一侧;
而银河系,在宇宙所有星系中,也许很不起眼……
这一切,组成了我们的宇宙:
宇宙,是所有天体共同的家园。
宇宙,又是我们所在的时间,“宙”的本意就是指“古往今来”。
因为,我们的宇宙不是从来就有的,它也有着诞生和成长的过程。现代科学发现,我们的宇宙大概形成于二百亿年以前。在一次无比壮观的大爆炸中,我们的宇宙诞生了!(这就是着名的“大爆炸”理论。)
宇宙一经形成,就在不停地运动着。科学家发现,宇宙正在膨胀着,星体之间的距离越来越大。
㈢ 如何拍摄泡泡破裂的瞬间照片
如果你可能需要创意提升或者需要重新发现你对摄影的热情。如果你决定接受这个难度挑战。我希望你在捕捉破裂泡沫时能对有所帮助。
泡沫破裂的速度意味着你可能需要多次尝试以确保时序正确。耐心是关键。不要放弃挑战。接受它会有点令人沮丧,但要知道,当你获得定时点时,你的最终图像将会更加令人满意。
㈣ 初一的科技小发明 简单点 不要太难
回家拿点砂糖,把砂糖放到可以加热的容器中煮熔化变成液体后,再把它倒到另一个圆形的容器中凝固,这样你就可以做棒棒糖啦。做完玩发明就把那糖给老师吃就行啦!
1.我们知道通常我们的抽屉里会发现一些旧电池,但是我们也不知道还有没有电,如果放进用电器来检验很麻烦而且无法知道它电剩余量。所以,你可以做一个小验电器。
方法简单如下:使用一个小灯泡,很小的那种(像挂坠或玩具灯上的,五金店都有卖)。然后用两根细漆包线分别连接灯上。两根线的另一端分别用于接你要检验的电池的正负极。根据小灯泡的亮度,就可以判断电池的电量了。
2.拿把破雨伞,把布拆掉,拿一条电线,一头接电视或收音机,一头接到伞上面,就是一个好好的信号接受器。你想专业一点就在伞上面多绕几圈铁丝就行了。这是最省钱,快捷的方法,只是有点搞笑。
3将一根火柴和一根缝被的大针并在一起,用包香烟的铝箔将它们紧紧地包裹起来,再将有火柴头的一端的铝箔弯折过来密封捻紧。然后在靠近尾部的地方装上定向尾翼,把针拔出,就成了一个很简单的反冲火箭。
实验时,把小火箭放在铁丝架上,点燃一根火柴,对准铝箔筒包有火柴头的部位加热。当温度升高到火柴头的燃点时,箔里的火柴匣被点燃,使周围的空气急剧膨胀,气体从尾口高速喷出。由于反冲作用,火箭筒便从架上向前飞了出去。
如果在铝箔中包两根头对头放置的火柴,两端都不封闭。将它放在上,从中部加热。当筒内火柴点燃后,气体从两头喷出,铝箔筒仍停留在架上,从而说明了系统的动量守恒.
4把两个同样的量角器在圆心处铆合并能灵活转动,把上面的量角器沿右端挫一个长l厘米的缺口,量角时,让它的张开与待测角的两条边重合,缺口所指示的刻度就是这个角的度数;画角时,先将缺口对准规定刻度,再沿张开处画两条射线就完成了。这种量角器还能测立体物(如螺帽)的角度。
因这种量角器使用时形似剪刀,我们把它叫“剪刀式量角器”。
5
我把我同学当年的小制作推荐给你吧。
他做的是个电子小天平模型,注意,这是个模型,只能称量很轻的物体,比如说两个小纸屑。制作需要的材料是:一块木板(最好薄一点,不要太大),一个垫圈,曲别针,锥子,电烙铁,几根导线,两个发光二极管,一节电池。这些材料都很好找,发光二极管如果没有的话可以去电子市场买到,很便宜的。
制作过程是这样的:在木板中间用锥子转一个小孔,将一个曲别针弯成勾形,与木板垂直的通过小孔固定在木板上,勾上能挂住垫圈就可以。然后取两枚曲别针,将其一半拉直,只保留一个拐弯,实际上拉直的部分就是天平的臂,剩下弯曲的部分就是托盘。另一个曲别针也做同样的操作。然后将两枚曲别针和垫圈焊在一起,垫圈在中间,曲别针要成一条直线。然后将垫圈挂到勾上,调整勾与木板的距离,大约3mm即可。然后在两个托盘下固定两枚曲别针,曲别针旁边准备用发光二极管作指示灯。在木板下面设立电路,天平就相当于单刀双掷开关。这个电路就相当于两个回路,共用一个电源,两个发光二极管。只要左边沉,左边的托盘就会和他下面的别针连通,从而电路接通,二极管发光;若两边重量相等,电路不通,两个二极管均不亮。
补充了一些 希望你能满意!
最后祝你制作成功,心情愉快!
一,小天平
温馨提示:必须在家长的帮助下进行啊!
1.先将三合板切成A、B、C、D。
2.在B的底端开口。C、D的中间开口。
3.将三根细条如图中插好。
4.将A钉在B的中上段,但注意不要钉死,要能活动自如。
5.用三合板裁出月牙形的标板,并标上刻度。
6. 再裁一小条用万能胶水固定在A上,如图。
7.裁两个圆片,大小相等。
8.在上边各扎四个小孔。
9.在A的两边各切一个小槽。
10.用细线栓住圆片,天平就做成了。
接下来就可以发挥你自己的想象,把小天平装饰一下,做完实验还可以拿来当小摆设,真是一举两得啊
二,演员走钢丝
演员在走钢丝表演时总拿一根长长的棍棒。也许人们会想,这不是增加演员的负担吗?等你做完下面的实验,就会改变这种看法了。
一、材料
白色硬纸板一块,10厘米长铁丝一根,图钉一枚,橡皮泥一团,长30厘米宽2厘米薄铁皮一条,胶带、胶水、剪刀、尺等。
二、制作
1.用硬纸剪一个小人形状,画上五官,涂上色彩,背后贴一张支撑条,小人脚部向前折,支撑条向后折,用胶水粘一枚图钉,剪去多余部分,图钉尖向后折。
2.把铁丝抹直,用橡皮泥捏两个相同大小的小球,固定在铁丝的两端,再用胶带将铁丝中间处粘在小人“双手”上,小人就能站立了。
3.用尺垂直抵在铁皮中心纸上,将铁皮折成直角,角朝下斜放在桌上,再用胶带固定住,放正小人,钉钩对准槽沟,小人就能从上端徐徐滑下而保持平滑。
三、揭秘
物体受到地球的引力,一个物体的平衡取决于它重心的位置,重心越低物体越平稳,长而下垂的棍棒起到降低重心的作用,重量的增加也有利于平衡,因此,演员走钢丝时要拿根棍棒。
三,热气球(孔明灯)的制作
我们一起来制作一个热气球通过电吹风的热风,可以使它徐徐上升,和真的热气球效果一样。
1.首先我们用软纸裁出6~8个叶状的纸片。
2.将它们对折并用胶水将它们的边粘在一起作成一个气球。
3.用胶带将四根连线粘到气球底部。用橡皮泥将线的另外一端固定在桌子上。
4.尽量将电吹风的速度调的很慢。将吹风口向上对准底部的开口并且打开开关。气球会慢慢变大拉紧细线并且离开桌面。
你可以做会扫地的乌龟嘛,鞋刷有吧,把鞋刷的把柄磨掉,在上面按上斯驱车上的马达,再在上面粘上蛋糕盘,做一点装饰,启动马达,小乌龟就走啦!
准备好做沙盘的材料和工具:底盘,轨道,颜料,草粉,草皮,硅胶枪,废报纸,白胶,石膏等。
按需要,可以自己设计轨道的形状和高度,用热硅胶拈合起来。(注意:一定要粘的牢,不能有松动或者倾斜)
在轨道上粘上美纹纸,以防在制作过程中有杂物进入,不宜清除。用废报纸塑造事先设计好的造型,可以用美纹纸固定,然后盖上石膏绷带,喷上清水。
基本形状固定好之后,再浇上石膏,这样会使整个造型更坚固,也便于上色。(注意:在浇石膏时小心避开轨道)
在已制作好的造型上粘上建筑物。
上色,上色是注意要先画深色的再画中间色,最后画高光,被风化效果,再种上植被。
种上植被,撒上草粉后,基本上完成了简单沙盘的制作,最后别忘了用砂皮打一下轨道,这样就完成了
做个孔明灯吧!
它自己可以飞起来!
2.1取材和制作
①取一只大号极薄的塑料手提袋,手提处剪平。
②取一根长约60cm的细铜丝(可用多股软铜线中的一股铜丝),两端分别系在方便袋口子两边。
③在细铜丝中间包上适量棉花,简易孔明灯便制成了。如图。
2.2放飞
选择没有风的地方(室内也可),一人两手分别捏住方便袋底部两角,使之开口朝下,并使包有棉花的细铜丝自然下垂。再在棉花上倒上适量酒精,点燃酒精,几十秒钟后,孔明灯便会腾空而起。
2.3注意
①酒精棉花不宜太重,一般可使总质量(方便袋、细铜丝、酒精棉花的总质量)在5g以下较易起飞。
②细铜丝长度要适当,以使酒精燃烧后不致溶化塑料袋为好,并注意防止失火。
③如果想把它拉下来,事先可在细铜丝中间再系一根细铜丝让它下垂
演员在走钢丝表演时总拿一根长长的棍棒。也许人们会想,这不是增加演员的负担吗?等你做完下面的实验,就会改变这种看法了。
一、材料
白色硬纸板一块,10厘米长铁丝一根,图钉一枚,橡皮泥一团,长30厘米宽2厘米薄铁皮一条,胶带、胶水、剪刀、尺等。
二、制作
1.用硬纸剪一个小人形状,画上五官,涂上色彩,背后贴一张支撑条,小人脚部向前折,支撑条向后折,用胶水粘一枚图钉,剪去多余部分,图钉尖向后折。
2.把铁丝抹直,用橡皮泥捏两个相同大小的小球,固定在铁丝的两端,再用胶带将铁丝中间处粘在小人“双手”上,小人就能站立了。
3.用尺垂直抵在铁皮中心纸上,将铁皮折成直角,角朝下斜放在桌上,再用胶带固定住,放正小人,钉钩对准槽沟,小人就能从上端徐徐滑下而保持平滑。
三、揭秘
物体受到地球的引力,一个物体的平衡取决于它重心的位置,重心越低物体越平稳,长而下垂的棍棒起到降低重心的作用,重量的增加也有利于平衡,因此,演员走钢丝时要拿根棍棒
做针孔照相机
方法:
针孔照相机
根据小孔成像的原理可以制成小孔成像仪,在其屏幕上可以看到清晰的图像,若在屏幕的位置装上感光底片,还可以拍出清晰的照片来,这就成了针孔照相机;不过这得要做一个“快门”和一个装底片的槽。另外,在密封上也比制作一般的小孔成像仪要求更严格些。
针孔照相机的构造如图10.6-l所示,机身全部用马粪纸粘合而成,分前盖和后罩两部分。
【制作方法】
按图10.6-2、10.6-3、10.6-4的尺寸(δ为马粪纸的厚度)画在马粪纸上,并沿各图的实线剪开,再用小刀沿各虚线轻轻刻过,切勿刻透,以便在折弯时折出一个直棱来。然后将各片的两面均涂上黑色。
将剪下的前盖外层展开图(图10.6-2)沿诸虚线折弯90°,围成一个五面纸盒,(小舌粘在盒的外侧)用胶带纸条粘好。再把一片120胶卷黑色衬纸贴在开有圆孔的一面上,用针在圆孔中心衬纸上刺一个小孔,直径约0.4毫米(12号缝衣针直径约0.4毫米)。再按图10.6-1所示,在小孔的侧边张贴一纸槽,纸槽内插一硬纸条,既可充当快门,又可保持小孔清洁。
将剪下的前盖内层展开图(图10.6-3)沿诸虚线折弯90°,使之成一个方筒,并将接口处粘好(小舌粘在方筒内侧)。再将有缺口的一端诸梯形小舌折倒成一纸框,并把加固框(图10.6-4)拿来对准缺口粘在一起。按加固框的尺寸再用硬纸片剪一个纸框,对齐缺口附在加固框上,并用胶带条在外部把这个纸框与方筒粘牢,加固框与硬纸框之间就形成一个纸槽,底片即可从有缺口的一边装进或取出,缺口是为装卸底片方便而设的。内层做好后,应与外层粘在一起,即将方筒另一端的各梯形小舌沿虚线折弯90°,涂好胶水,对齐缺口,边套进外层,边在各面的内外层之间插一马粪纸片,以保证各面内外层的间隙相同,待内层前端与外层有圆孔的一面粘牢后,再抽出插进的马粪纸片,前盖就做好了。
关于后罩的制作,除侧边宽度为80+26毫米和底面无小孔外,其他都与前盖外层制作相同,参照前盖外层展开图和相应的尺寸下料制作即可。
【使用方法】
1.针孔照相机的像距约64毫米和透光孔径0.4毫米都是固定的,因此光圈也是固定的,实验得知光圈数约为160。当被摄景物亮度不同时,只能用曝光时间来调整。由于一般照相机的光圈数为22左右,查不出光圈160的曝光时间来,因此可根据曝光时间之比等于光圈比的平方(即t1:t2=(F1:F2)2)来确定。例如,摄某景物时,用光圈16曝光时间为1/30秒,则用针孔照相机光圈160时曝光时间就应为3.3秒。最佳曝光时间还应该通过实验来确定。
2.用针孔照相机拍照片时取景方法如图10.6-5所示。用一只眼睛贴紧一边中点,向对边两端点“瞄准”看出去,那么,夹在这个角内的部分就是被摄取的范围。移动相机与所摄景物间的距离,可改变像的大小。
3.曝光:取好被摄景物,计算好曝光时间,把遮盖小孔的硬纸片拉开,到预定曝光时间关闭即可。
4.装片和卸片:单张60×60毫米2的底片常不易买到,需用大的底片加以裁剪。装片,卸片,裁剪底片都要在不透光的暗室中进行。
【注意事项】
1.制作时要仔细,不能有漏光现象。
2.针孔要圆而且边缘要光滑。
3.由于曝光时间较长,故以拍静物为宜
既轻便、又不弯腰的拖地工具—— 鞋拖。
制作方法:1、鞋拖要比自己平时穿的鞋子大一些,便于套穿在鞋子上。
2、用碎布条作鞋底上的拖把条,拖把条上面钉一层较厚的塑料 底,既防水又耐用。
3、用布壳和防水布做成鞋帮,鞋帮的后根安上一条拉链,穿脱方便。把鞋帮和鞋底连起来,鞋拖就做成了。
㈤ 日常生活中的物理问题
1、 挂在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“9”的位置。这是由于秒针在“9”位置处受到重力矩的阻碍作用最大。
2、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。这是由于水从水龙头冲出时引起水管共振的缘故.
3、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光.
4、冰冻的猪肉在水中比在同温度的空气中解冻得快。烧烫的铁钉放入水中比在同温度的空气中冷却得快。装有滚烫的开水的杯子浸入水中比在同温度的空气中冷却得快。这些现象都表明:水的热传递性比空气好,
5、锅内盛有冷水时,锅底外表面附着的水滴在火焰上较长时间才能被烧干,且直到烧干也不沸腾,这是由于水滴、锅和锅内的水三者保持热传导,温度大致相同,只要锅内的水未沸腾,水滴也不会沸腾,水滴在火焰上靠蒸发而渐渐地被烧干,
6、走样的镜子,人距镜越远越走样.因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样.
7、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出, 只从喷口喷出.这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。
8、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此而摆动,从而运动方向就不断变化。
9、吊扇在正常转动时悬挂点受的拉力比未转动时要小,转速越大,拉力减小越多.这是因为吊扇转动时空气对吊扇叶片有向上的反作用力.转速越大,此反作用力越大.
10、电炉“燃烧”是电能转化为内能,不需要氧气,氧气只能使电炉丝氧化而缩短其使用寿命。
11、从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变。这是由于纸片各部分凸凹不同,形状备异,因而在下落过程中,其表面各处的气流速度不同,根据流体力学原理,流速大,压强小,致使纸片上各处受空气作用力不均匀,且随纸片运动情况的变化而变化,所以纸片不断翻滚,曲折下落
• 人体与物理 • 汉语成语与物理
• 爱斯基摩人的冰屋 • 神奇的磁化水
• 照明节电 • 从垃圾中获得能量
• 呵气和吹气 • 电子琴的发音原理
• 潮汐产生的原因 • 潮汐发电
• 利用发光二极管种植蔬菜 • 高空的气温为什么低?
• 冰棍和冰激凌 • 失重和宇宙开发
• 测定反应时间 • 混响
• 感受向心力 • 放电现象
• 照相用闪光灯 • 无处不在的弹簧
• 静电的应用 • 磁带录音原理
• 日光灯 • 毛细现象
• 液晶 • 半导体
• 磁性材料 • 磁与生物
• 光圈指数中的规律 • 直线电机和磁悬浮列车
• 观察日光灯的闪烁 • 无线电波的传播
• 电视和雷达 • 激光
• 放射性同位素的应用 • 光导纤维
• 蒙气差 • 噪声的作用
• 海市蜃楼 • 眼睛
• 光的电磁说 • 笔杆上的小孔有什么功用?
• 激光 • 如何确定古木的年代
• 饺子或肉丸煮熟了为什么会浮起来? • 立体电影和偏振
• 人是怎样看见物体的? • 打气筒在使用时为什么会变热?
• 电冰箱的原理 • 电冰箱门上的星标
• 高空的白雾带是怎样形成的? • 水烧开时不会溢出来,为什么粥烧开了却会溢泻出来呢?
• 为什么刚掀开的冷冻啤酒瓶口会冒出雾气? • 为什么罐装的自动喷剂喷了一会罐身会变凉?
• 为什么用湿布抹冰箱的冰格会被粘着? • 向手背呵气和吹气感觉有什么区别?
• 怎样把开水冷却? • 那么,米粒是怎样被扩大的呢?
• 钟表小史 • 怎样旋开玻璃瓶上太紧的铁盖?
• 饭菜扑鼻香 • 香脆的爆米花
• 暄松的馒头 • 多孔的冻豆腐
• 冰棍“冒汽” • 吃鸡蛋有诀窍
• 服装的颜色 • 怎样使服装挺括
• 关羽和张飞比力气 • 雨衣上的学问
• 巧妙的纸弹竹枪 • “爬云梯”的梯子短一些是否更安全?
• 地球隧道中石头作什么运动 • 为什么1980年迟了一秒钟
• 多米诺骨牌效应 • 旋转的乒乓球
• 爆炸时寂静区是怎样形成的? • 开水倒在地上为什么发出低沉的“扑扑”声?
• 如何减少烟尘对大气的污染 • “热得快”的奥秘
• 沙雕艺术中的物理学 • 浅谈纳米技术
• 水生细菌的磁罗盘 • 鸽子是怎么认识归家之路的?
• 三线插头是不是三相插头? • 当你站在角镜前,你的像有多少个?
• 视网膜前面的血细胞引起的幻觉 • 米格伦疑案的真相
• 有孔纸片托水 • 有趣的橡皮脸
• 火烧手绢 • 无中生有
• 纸片腾空 • 破镜重圆
• 吹掉帽子 • 不可思议的平衡表演
• 连结玻璃杯 • 气球吸杯
• 趣味拔河赛 • 大雪后为什么很寂静
• 天空的颜色与大气污染 • 肥皂泡为什么总是先上升后下降
• 闪电为什么是弯弯曲曲的 • 不祥的圣婴——厄尔尼诺