① k8s和docker区别是什么
k8s和docker区别有以下几点:
1、k8s是一种开放源码的容器集群管理系统,能够实现自动化部署、扩展容器集群、维护等功能。
2、Docker是一种开放源码的应用容器引擎,开发者可以将他们的应用和依赖打包在一个可移植的容器中,发布到流行的Linux机器上,也可以实现虚拟化。
3、k8s的全称kubernetes。它是一个完整的分布式系统支撑平台,集群管理功能齐全。Kubernetes同时提供完善的管理工具,涵盖了开发、部署、测试、运行监控等各个环节。
4、Docker是一种开放源码的应用容器引擎,允许开发人员将其应用和依赖包打包成可移植的镜像,然后发布到任何流行的Linux或Windows机器上,也能实现虚拟化。该容器完全使用沙箱机制,彼此之间没有任何接口。
② 虚拟化有哪些应用
近年来,云原生 (Cloud Native)可谓是 IT 界最火的概念之一,众多互联网巨头都已经开始积极拥抱云原生。而说到云原生,我们就不得不了解本文的主角 —— 容器(container)。容器技术可谓是撑起了云原生生态的半壁江山。容器作为一种先进的虚拟化技术,已然成为了云原生时代软件开发和运维的标准基础设施,在了解它之前,我们不妨从虚拟化技术说起。
何谓虚拟化技术
1961 年 —— IBM709 机实现了分时系统
计算机历史上首个虚拟化技术实现于 1961 年,IBM709 计算机首次将 CPU 占用切分为多个极短 (1/100sec) 时间片,每一个时间片都用来执行着不同的任务。通过对这些时间片的轮询,这样就可以将一个 CPU 虚拟化或者伪装成为多个 CPU,并且让每一颗虚拟 CPU 看起来都是在同时运行的。这就是虚拟机的雏形。
容器的功能其实和虚拟机类似,无论容器还是虚拟机,其实都是在计算机不同的层面进行虚拟化,即使用逻辑来表示资源,从而摆脱物理限制的约束,提高物理资源的利用率。虚拟化技术是一个抽象又内涵丰富的概念,在不同的领域或层面有着不同的含义。
这里我们首先来粗略地讲讲计算机的层级结构。计算机系统对于大部分软件开发者来说可以分为以下层级结构:
应用程序层
函数库层
操作系统层
硬件层
各层级自底向上,每一层都向上提供了接口,同时每一层也只需要知道下一层的接口即可调用底层功能来实现上层操作(不需要知道底层的具体运作机制)。
但由于早期计算机厂商生产出来的硬件遵循各自的标准和规范,使得操作系统在不同计算机硬件之间的兼容性很差;同理,不同的软件在不同的操作系统下的兼容性也很差。于是,就有开发者人为地在层与层之间创造了抽象层:
应用层
函数库层
API抽象层
操作系统层
硬件抽象层
硬件层
就我们探讨的层面来说,所谓虚拟化就是在上下两层之间,人为地创造出一个新的抽象层,使得上层软件可以直接运行在新的虚拟环境上。简单来说,虚拟化就是通过模访下层原有的功能模块创造接口,来“欺骗”上层,从而达到跨平台开发的目的。
综合上述理念,我们就可以重新认识如今几大广为人知的虚拟化技术:
虚拟机:存在于硬件层和操作系统层间的虚拟化技术。
虚拟机通过“伪造”一个硬件抽象接口,将一个操作系统以及操作系统层以上的层嫁接到硬件上,实现和真实物理机几乎一样的功能。比如我们在一台 Windows 系统的电脑上使用 Android 虚拟机,就能够用这台电脑打开 Android 系统上的应用。
容器:存在于操作系统层和函数库层之间的虚拟化技术。
容器通过“伪造”操作系统的接口,将函数库层以上的功能置于操作系统上。以 Docker 为例,其就是一个基于 Linux 操作系统的 Namespace 和 Cgroup 功能实现的隔离容器,可以模拟操作系统的功能。简单来说,如果虚拟机是把整个操作系统封装隔离,从而实现跨平台应用的话,那么容器则是把一个个应用单独封装隔离,从而实现跨平台应用。所以容器体积比虚拟机小很多,理论上占用资源更少。
JVM:存在于函数库层和应用程序之间的虚拟化技术。
java 虚拟机同样具有跨平台特性,所谓跨平台特性实际上也就是虚拟化的功劳。我们知道 Java 语言是调用操作系统函数库的,JVM 就是在应用层与函数库层之间建立一个抽象层,对下通过不同的版本适应不同的操作系统函数库,对上提供统一的运行环境交给程序和开发者,使开发者能够调用不同操作系统的函数库。
在大致理解了虚拟化技术之后,接下来我们就可以来了解容器的诞生历史。虽然容器概念是在 Docker 出现以后才开始在全球范围内火起来的,但在 Docker 之前,就已经有无数先驱在探索这一极具前瞻性的虚拟化技术。
容器的前身 “Jail”
1979 年 —— 贝尔实验室发明 chroot
容器主要的特性之一就是进程隔离。早在 1979 年,贝尔实验室在 Unix V7 的开发过程中,发现当一个系统软件编译和安装完成后,整个测试环境的变量就会发生改变,如果要进行下一次构建、安装和测试,就必须重新搭建和配置测试环境。要知道在那个年代,一块 64K 的内存条就要卖 419 美元,“快速销毁和重建基础设施”的成本实在是太高了。
开发者们开始思考,能否在现有的操作系统环境下,隔离出一个用来重构和测试软件的独立环境?于是,一个叫做 chroot(Change Root)的系统调用功能就此诞生。
chroot 可以重定向进程及其子进程的 root 目录到文件系统上的新位置,也就是说使用它可以分离每个进程的文件访问权限,使得该进程无法接触到外面的文件,因此这个被隔离出来的新环境也得到了一个非常形象的命名,叫做 Chroot Jail (监狱)。之后只要把需要的系统文件一并拷贝到 Chroot Jail 中,就能够实现软件重构和测试。这项进步开启了进程隔离的大门,为 Unix 提供了一种简单的系统隔离功能,尤其是 jail 的思路为容器技术的发展奠定了基础。但是此时 chroot 的隔离功能仅限于文件系统,进程和网络空间并没有得到相应的处理。
进入21世纪,此时的虚拟机(VM)技术已经相对成熟,人们可以通过虚拟机技术实现跨操作系统的开发。但由于 VM 需要对整个操作系统进行封装隔离,占用资源很大,在生产环境中显得太过于笨重。于是人们开始追求一种更加轻便的虚拟化技术,众多基于 chroot 扩展实现的进程隔离技术陆续诞生。
2000 年 —— FreeBSD 推出 FreeBSD Jail
在 chroot 诞生 21 年后,FreeBSD 4.0 版本推出了一套微型主机环境共享系统 FreeBSD Jail,将 chroot 已有的机制进行了扩展。在 FreeBSD Jail 中,程序除了有自己的文件系统以外,还有独立的进程和网络空间,Jail 中的进程既不能访问也不能看到 Jail 之外的文件、进程和网络资源。
2001 年 —— Linux VServer 诞生
2001年,Linux 内核新增 Linux VServer(虚拟服务器),为 Linux 系统提供虚拟化功能。Linux VServer 采取的也是一种 jail 机制,它能够划分计算机系统上的文件系统、网络地址和内存,并允许一次运行多个虚拟单元。
2004 年 —— SUN 发布 Solaris Containers
该技术同样由 chroot 进一步发展而来。2004 年 2 月,SUN 发布类 Unix 系统 Solaris 的 10 beta 版,新增操作系统虚拟化功能 Container,并在之后的 Solaris 10 正式版中完善。Solaris Containers 支持 x86 和 SPARC 系统,SUN 创造了一个 zone 功能与 Container 配合使用,前者是一个单一操作系统中完全隔离的虚拟服务器,由系统资源控制和 zones 提供的边界分离实现进程隔离。
2005 年 —— OpenVZ 诞生
类似于 Solaris Containers,它通过对 Linux 内核进行补丁来提供虚拟化、隔离、资源管理和状态检查 checkpointing。每个 OpenVZ 容器都有一套隔离的文件系统、用户及用户组、进程树、网络、设备和 IPC 对象。
这个时期的进程隔离技术大多以 Jail 模式为核心,基本实现了进程相关资源的隔离操作,但由于此时的生产开发仍未有相应的使用场景,这一技术始终被局限在了小众而有限的世界里。
就在此时,一种名为“云”的新技术正悄然萌发……
“云”的诞生
2003 年至 2006 年间,Google 公司陆续发布了 3 篇产品设计论文,从计算方式到存储方式,开创性地提出了分布式计算架构,奠定了大数据计算技术的基础。在此基础上,Google 颠覆性地提出“Google 101”计划,并正式创造“云”的概念。一时间,“云计算”、“云存储”等全新词汇轰动全球。随后,亚马逊、IBM 等行业巨头也陆续宣布各自的“云”计划,宣告“云”技术时代的来临。
也是从这时期开始,进程隔离技术进入了一个更高级的阶段。在 Google 提出的云计算框架下,被隔离的进程不仅仅是一个与外界隔绝但本身却巍然不动的 Jail,它们更需要像一个个轻便的容器,除了能够与外界隔离之外,还要能够被控制与调配,从而实现分布式应用场景下的跨平台、高可用、可扩展等特性。
2006 年 —— Google 推出 Process Containers,后更名为 Cgroups
Process Container 是 Google 工程师眼中“容器”技术的雏形,用来对一组进程进行限制、记账、隔离资源(CPU、内存、磁盘 I/O、网络等)。这与前面提到的进程隔离技术的目标其实是一致的。由于技术更加成熟,Process Container 在 2006 年正式推出后,第二年就进入了 Linux 内核主干,并正式更名为 Cgroups,标志着 Linux 阵营中“容器”的概念开始被重新审视和实现。
2008 年 —— Linux 容器工具 LXC 诞生
在 2008 年,通过将 Cgroups 的资源管理能力和 Linux Namespace(命名空间)的视图隔离能力组合在一起,一项完整的容器技术 LXC(Linux Container)出现在了 Linux 内核中,这就是如今被广泛应用的容器技术的实现基础。我们知道,一个进程可以调用它所在物理机上的所有资源,这样一来就会挤占其它进程的可用资源,为了限制这样的情况,Linux 内核开发者提供了一种特性,进程在一个 Cgroup 中运行的情况与在一个命名空间中类似,但是 Cgroup 可以限制该进程可用的资源。尽管 LXC 提供给用户的能力跟前面提到的各种 Jails 以及 OpenVZ 等早期 Linux 沙箱技术是非常相似的,但伴随着各种 Linux 发行版开始迅速占领商用服务器市场,包括 Google 在内的众多云计算先锋厂商得以充分活用这一早期容器技术,让 LXC 在云计算领域获得了远超前辈的发展空间 。
同年,Google 基于 LXC 推出首款应用托管平台 GAE (Google App Engine),首次把开发平台当做一种服务来提供。GAE 是一种分布式平台服务,Google 通过虚拟化技术为用户提供开发环境、服务器平台、硬件资源等服务,用户可以在平台基础上定制开发自己的应用程序并通过 Google 的服务器和互联网资源进行分发,大大降低了用户自身的硬件要求。
值得一提的是,Google 在 GAE 中使用了一个能够对 LXC 进行编排和调度的工具 —— Borg (Kubernetes 的前身)。Borg 是 Google 内部使用的大规模集群管理系统,可以承载十万级的任务、数千个不同的应用、同时管理数万台机器。Borg 通过权限管理、资源共享、性能隔离等来达到高资源利用率。它能够支持高可用应用,并通过调度策略减少出现故障的概率,提供了任务描述语言、实时任务监控、分析工具等。如果说一个个隔离的容器是集装箱,那么 Borg 可以说是最早的港口系统,而 LXC + Borg 就是最早的容器编排框架。此时,容器已经不再是一种单纯的进程隔离功能,而是一种灵活、轻便的程序封装模式。
2011 年 —— Cloud Foundry 推出 Warden
Cloud Foundry 是知名云服务供应商 VMware 在 2009 年推出的一个云平台,也是业内首个正式定义 PaaS (平台即服务)模式的项目,“PaaS 项目通过对应用的直接管理、编排和调度让开发者专注于业务逻辑而非基础设施”,以及“PaaS 项目通过容器技术来封装和启动应用”等理念都出自 Cloud Foundry。Warden 是 Cloud Foundry 核心部分的资源管理容器,它最开始是一个 LXC 的封装,后来重构成了直接对 Cgroups 以及 Linux Namespace 操作的架构。
随着“云”服务市场的不断开拓,各种 PaaS 项目陆续出现,容器技术也迎来了一个爆发式增长的时代,一大批围绕容器技术进行的创业项目陆续涌现。当然,后来的故事很多人都知道了,一家叫 Docker 的创业公司横空出世,让 Docker 几乎成为了“容器”的代名词。
Docker 横空出世
2013 年 —— Docker 诞生
Docker 最初是一个叫做 dotCloud 的 PaaS 服务公司的内部项目,后来该公司改名为 Docker。Docker 在初期与 Warden 类似,使用的也是 LXC ,之后才开始采用自己开发的 libcontainer 来替代 LXC 。与其他只做容器的项目不同的是,Docker 引入了一整套管理容器的生态系统,这包括高效、分层的容器镜像模型、全局和本地的容器注册库、清晰的 REST API、命令行等等。
Docker 本身其实也是属于 LXC 的一种封装,提供简单易用的容器使用接口。它最大的特性就是引入了容器镜像。Docker 通过容器镜像,将应用程序与运行该程序需要的环境,打包放在一个文件里面。运行这个文件,就会生成一个虚拟容器。
更为重要的是,Docker 项目还采用了 Git 的思路 —— 在容器镜像的制作上引入了“层”的概念。基于不同的“层”,容器可以加入不同的信息,使其可以进行版本管理、复制、分享、修改,就像管理普通的代码一样。通过制作 Docker 镜像,开发者可以通过 DockerHub 这样的镜像托管仓库,把软件直接进行分发。
也就是说,Docker 的诞生不仅解决了软件开发层面的容器化问题,还一并解决了软件分发环节的问题,为“云”时代的软件生命周期流程提供了一套完整的解决方案。
很快,Docker 在业内名声大噪,被很多公司选为云计算基础设施建设的标准,容器化技术也成为业内最炙手可热的前沿技术,围绕容器的生态建设风风火火地开始了。
容器江湖之争
一项新技术的兴起同时也带来了一片新的市场,一场关于容器的蓝海之争也在所难免。
2013 年 —— CoreOS 发布
在 Docker 爆火后,同年年末,CoreOS 应运而生。CoreOS 是一个基于 Linux 内核的轻量级操作系统,专为云计算时代计算机集群的基础设施建设而设计,拥有自动化、易部署、安全可靠、规模化等特性。其在当时有一个非常显眼的标签:专为容器设计的操作系统。
借着 Docker 的东风,CoreOS 迅速在云计算领域蹿红,一时间,Docker + CoreOS 成为业内容器部署的黄金搭档。同时,CoreOS 也为 Docker 的推广与社区建设做出了巨大的贡献。
然而,日渐壮大的 Docker 似乎有着更大的“野心”。不甘于只做“一种简单的基础单元”的 Docker,自行开发了一系列相关的容器组件,同时收购了一些容器化技术的公司,开始打造属于自己的容器生态平台。显然,这对于 CoreOS 来说形成了直接的竞争关系。
2014 年 —— CoreOS 发布开源容器引擎 Rocket
2014 年末,CoreOS 推出了自己的容器引擎 Rocket (简称 rkt),试图与 Docker 分庭抗礼。rkt 和 Docker 类似,都能帮助开发者打包应用和依赖包到可移植容器中,简化搭环境等部署工作。rkt 和 Docker 不同的地方在于,rkt 没有 Docker 那些为企业用户提供的“友好功能”,比如云服务加速工具、集群系统等。反过来说,rkt 想做的,是一个更纯粹的业界标准。
2014 年 —— Google 推出开源的容器编排引擎 Kubernetes
为了适应混合云场景下大规模集群的容器部署、管理等问题,Google 在 2014 年 6 月推出了容器集群管理系统 Kubernetes (简称 K8S)。K8S 来源于我们前面提到的 Borg,拥有在混合云场景的生产环境下对容器进行管理、编排的功能。Kubernetes 在容器的基础上引入了 Pod 功能,这个功能可以让不同容器之间互相通信,实现容器的分组调配。
得益于 Google 在大规模集群基础设施建设的强大积累,脱胎于 Borg 的 K8S 很快成为了行业的标准应用,堪称容器编排的必备工具。而作为容器生态圈举足轻重的一员,Google 在 Docker 与 rkt 的容器之争中站在了 CoreOS 一边,并将 K8S 支持 rkt 作为一个重要里程碑。
2015 年 —— Docker 推出容器集群管理工具 Docker Swarm
作为回应,Docker 公司在 2015 年发布的 Docker 1.12 版本中也开始加入了一个容器集群管理工具 Docker swarm 。
随后,Google 于 2015 年 4 月领投 CoreOS 1200 万美元, 并与 CoreOS 合作发布了首个企业发行版的 Kubernetes —— Tectonic 。从此,容器江湖分为两大阵营,Google 派系和 Docker 派系。
两大派系的竞争愈演愈烈,逐渐延伸到行业标准的建立之争。
2015 年 6 月 —— Docker 带头成立 OCI
Docker 联合 Linux 基金会成立 OCI (Open Container Initiative)组织,旨在“制定并维护容器镜像格式和容器运行时的正式规范(“OCI Specifications”),围绕容器格式和运行时制定一个开放的工业化标准。
2015 年 7 月 —— Google 带头成立 CNCF
而战略目标聚焦于“云”的 Google 在同年 7 月也联合 Linux 基金会成立 CNCF (Cloud Native Computing Foundation)云原生计算基金会,并将 Kubernetes 作为首个编入 CNCF 管理体系的开源项目,旨在“构建云原生计算 —— 一种围绕着微服务、容器和应用动态调度的、以基础设施为中心的架构,并促进其广泛使用”。
这两大围绕容器相关开源项目建立的开源基金会为推动日后的云原生发展发挥了重要的作用,二者相辅相成,制定了一系列行业事实标准,成为当下最为活跃的开源组织。
Kubernetes 生态一统江湖
虽然这些年来 Docker 一直力压 rkt,成为当之无愧的容器一哥,但作为一个庞大的容器技术生态来说,Docker 生态还是在后来的容器编排之争中败给了 Google 的 Kubernetes 。
随着越来越多的开发者使用 Docker 来部署容器,编排平台的重要性日益突出。在 Docker 流行之后,一大批开源项目和专有平台陆续出现,以解决容器编排的问题。Mesos、Docker Swarm 和 Kubernetes 等均提供了不同的抽象来管理容器。这一时期,对于软件开发者来说,选择容器编排平台就像是一场豪赌,因为一旦选择的平台在以后的竞争中败下阵来,就意味着接下来开发的东西在未来将失去市场。就像当初 Android、iOS 和 WP 的手机系统之争一样,只有胜利者才能获得更大的市场前景,失败者甚至会销声匿迹。容器编排平台之争就此拉开帷幕。
2016 年 —— CRI-O 诞生
2016 年,Kubernetes 项目推出了 CRI (容器运行时接口),这个插件接口让 kubelet(一种用来创建 pod、启动容器的集群节点代理)能够使用不同的、符合 OCI 的容器运行时环境,而不需要重新编译 Kubernetes。基于 CRI ,一个名为 CRI-O 的开源项目诞生,旨在为 Kubernetes 提供一种轻量级运行时环境。
CRI-O 可以让开发者直接从 Kubernetes 来运行容器,这意味着 Kubernetes 可以不依赖于传统的容器引擎(比如 Docker ),也能够管理容器化工作负载。这样一来,在 Kubernetes 平台上,只要容器符合 OCI 标准(不一定得是 Docker),CRI-O 就可以运行它,让容器回归其最基本的功能 —— 能够封装并运行云原生程序即可。
同时,CRI-O 的出现让使用容器技术进行软件管理和运维的人们发现,相对于 Docker 本身的标准容器引擎, Kubernetes 技术栈(比如编排系统、 CRI 和 CRI-O )更适合用来管理复杂的生产环境。可以说,CRI-O 将容器编排工具放在了容器技术栈的重要位置,从而降低了容器引擎的重要性。
在 K8S 顺利抢占先机的情况下,Docker 在推广自己的容器编排平台 Docker Swarm 时反而犯下了错误。2016 年底,业内曝出 Docker 为了更好地适配 Swarm,将有可能改变 Docker 标准的传言。这让许多开发者在平台的选择上更倾向于与市场兼容性更强的 Kubernetes 。
因此,在进入 2017 年之后,更多的厂商愿意把宝压在 K8S 上,投入到 K8S 相关生态的建设中来。容器编排之争以 Google 阵营的胜利告一段落。与此同时,以 K8S 为核心的 CNCF 也开始迅猛发展,成为当下最火的开源项目基金会。这两年包括阿里云、腾讯、网络等中国科技企业也陆续加入 CNCF ,全面拥抱容器技术与云原生。
结语
从数十年前在实验室里对进程隔离功能的探索,再到如今遍布生产环境的云原生基础设施建设,可以说容器技术凝聚了几代开发者的心血,才从一个小小的集装箱发展到一个大型的现代化港口。可以预见的是,从现在到未来很长一段时间里,容器技术都将是软件开发和运维的重要基础设施。
③ kubernetes源码是java吗
Kubernetes(简称k8s)是Google在2014年6月开源的一个容器集群管理系统,使用Go语言开发,用于管理云平台中多个主机上的容器化的应用,Kubernetes的目标是让部署容器化的应用简单并且高效,Kubernetes提供了资源调度、部署管理、服务发现、扩容缩容、监控,维护等一整套功能。,努力成为跨主机集群的自动部署、扩展以及运行应用程序容器的平台。 它支持一系列容器工具, 包括Docker等。
所以注意:K8s学习有一个前提条件,需要先掌握docker,如果你没有docker基础的话,那还不能学习 K8s k8s它底层的部署容器的那么容器本来就是docker。
还可以通过B站上这个视频教程了解更多:
④ kubernetes 编译时 获取 go包 失败怎么办
如果编译时程序出现了错误,可能是内存出现了问题,需要换个内存解决问题。
内存是电脑的记忆部件,用于存放电脑运行中的原始数据、中间结果以及指示电脑工作的程序。
内存可以分为随机访问存储器和只读存储器,前者允许数据的读取与写入,磁盘中的程序必须被调入内存后才能运行,中央处理器可直接访问内存,与内存交换数据。电脑断电后,随机访问存储器里的信息就会丢失。后者的信息只能读出,不能随意写入,即使断电也不会丢失。
由于电路的复杂性因素,电脑中都使用二进制数,只有0和1两个数码,逢二进一,最容易用电路来表达,比如0代表电路不通,1代表电路通畅。人们平时用电脑时感觉不到它是在用二进制计算是因为电脑会把人们输入的信息自动转换成二进制,算出的二进制数再转换成人们能看到的信息显示到屏幕上。
在存储器中含有大量的基本单元,每个存储单元可以存放八个二进制位,即一个零到二百五十五之间的整数、一个字母或一个标点符号等,叫做一个字节。存储器的容量就是以字节为基本单位的,每个单元都有唯一的序号,叫做地址。中央处理器凭借地址,准确地操纵着每个单元,处理数据。由于字节这个单位太小了,人们定义了几个更大的单位,这些单位是以2的十次幂做进位,单位有KB、MB、GB、TB等。
常见的内存包括同步动态随机存储器、双倍速率同步动态随机存储器、接口动态随机存储器。
⑤ 如何入门k8s
Kubernetes(简称K8S) 是Google开源的分布式的容器管理平台,方便我们在服务器集群中管理我们容器化应用。
节点(Master node and Worker node)
节点通常指的就是服务器,在k8s中有两种节点:管理节点(Master Node)和工作节点(Worker Node)
管理节点(Master Node):负责管理整个k8s集群,一般由3个管理节点组成HA的架构。
工作节点(Worker Node):主要负责运行容器。
命名空间(Namespace)
k8s命名空间主要用于隔离集群资源、隔离容器等,为集群提供了一种虚拟隔离的策略;默认存在3个名字空间,分别是默认命名空间 default、系统命名空间 kube-system 和 kube-public。
Object
k8s 对象(Object)是一种持久化存储并且用于表示集群状态的实体。k8s 对象其实就是k8s自己的配置协议,总之我们可以通过定义一个object让k8s根据object定义执行一些部署任务、监控任务等等。
POD
Pod是 Kubernetes 部署应用或服务的最小的基本单位。一个Pod 封装多个应用容器(也可以只有一个容器)、存储资源、一个独立的网络 IP 以及管理控制容器运行方式的策略选项。
副本集(Replica Set,RS)
是一种控制器,负责监控和维护集群中pod的副本(replicas)数,确保pod的副本数是我们期望的样子。
部署(Deployment)
表示对k8s集群的一次更新操作,是k8s集群中最常用的Object,主要用于部署应用。支持滚动升级。
服务(service)
是对应用的抽象,也是k8s中的基本操作单元,一个服务背后由多个pod支持,服务通过负载均衡策略将请求转发到容器中。
Ingress
是一种网关服务,可以将k8s服务通过http协议暴露到外部。
无状态应用 & 有状态应用
无状态应用指的是应用在容器中运行时候不会在容器中持久化存储数据,应用容器可以随意创建、销毁;如果一个应用有多个容器实例,对于无状态应用,请求转发给任何一个容器实例都可以正确运行。例如:web应用
有状态应用指的是应用在容器中运行时候需要稳定的持久化存储、稳定的网络标识、固定的pod启动和停止次序。例如:mysql数据库
⑥ K8S的概念是什么
k8s全称kubernetes,这个名字大家应该都不陌生,k8s是为容器服务而生的一个可移植容器的编排管理工具,越来越多的公司正在拥抱k8s,并且当前k8s已经主导了云业务流程,推动了微服务架构等热门技术的普及和落地,正在如火如荼的发展。想要了解更多,我推荐你去看看时速云,他们是一家全栈云原生技术服务提供商,提供云原生应用及数据平台产品,其中涵盖容器云PaaS、DevOps、微服务治理、服务网格、API网关等。大家可以去体验一下。
希望能给您提供帮助,可以给个大大的赞不。
⑦ k8s为什么那么多人不会
开源系统难度较高。K8s是一套完全开源的编程系统,它内部支持拓展的代码有上万条,分类方法也有2000多个,所以对于使用者来说,初级入门也很难,很多定制化的类和方法的调用和常规的SSH调法不同,目前K8S培训班通过率也只有40%。
⑧ kubernetes 是什么语言开发的
kubernetes是go语言写的,他里面有一些restfulapi接口,是开源容器应用自动化部署技术,也就是大家经常说的k8s。
kubernetes(k8s)是自动化容器操作的开源平台,这些操作包括部署,调度和节点集群间扩展。如果你曾经用过Docker容器技术部署容器,那么可以将Docker看成Kubernetes内部使用的低级别组件。Kubernetes不仅仅支持Docker,还支持Rocket,这是另一种容器技术。
使用Kubernetes可以:
自动化容器的部署和复制
随时扩展或收缩容器规模
将容器组织成组,并且提供容器间的负载均衡
很容易地升级应用程序容器的新版本
提供容器弹性,如果容器失效就替换它,等等...
K8s学习有一个前提条件,需要先掌握docker,如果你没有docker基础的话,那还不能学习 K8s k8s它底层的部署容器的那么容器本来就是docker。
可以看看这个视频教程,还是非常认真仔细的!
⑨ 如何进行K8S存储系统
在K8S运行的服务,从简单到复杂可以分成三类:无状态服务、普通有状态服务和有状态集群服务。下面分别来看K8S是如何运行这三类服务的。
无状态服务,K8S使用RC(或更新的Replica Set)来保证一个服务的实例数量,如果说某个Pod实例由于某种原因Crash了,RC会立刻用这个Pod的模版新启一个Pod来替代它,由于是无状态的服务,新启的Pod与原来健康状态下的Pod一模一样。在Pod被重建后它的IP地址可能发生变化,为了对外提供一个稳定的访问接口,K8S引入了Service的概念。一个Service后面可以挂多个Pod,实现服务的高可用。
普通有状态服务,和无状态服务相比,它多了状态保存的需求。Kubernetes提供了以Volume和Persistent Volume为基础的存储系统,可以实现服务的状态保存。
有状态集群服务,与普通有状态服务相比,它多了集群管理的需求。K8S为此开发了一套以Pet Set为核心的全新特性,方便了有状态集群服务在K8S上的部署和管理。具体来说是通过Init Container来做集群的初始化工作,用Headless Service来维持集群成员的稳定关系,用动态存储供给来方便集群扩容,最后用Pet Set来综合管理整个集群。
要运行有状态集群服务要解决的问题有两个,一个是状态保存,另一个是集群管理。我们先来看如何解决第一个问题:状态保存。Kubernetes有一套以Volume插件为基础的存储系统,通过这套存储系统可以实现应用和服务的状态保存。
K8S的存储系统从基础到高级又大致分为三个层次:普通Volume,Persistent Volume和动态存储供应。
1.普通Volume
最简单的普通Volume是单节点Volume。它和Docker的存储卷类似,使用的是Pod所在K8S节点的本地目录。
第二种类型是跨节点存储卷,这种存储卷不和某个具体的K8S节点绑定,而是独立于K8S节点存在的,整个存储集群和K8S集群是两个集群,相互独立。
跨节点的存储卷在Kubernetes上用的比较多,如果已有的存储不能满足要求,还可以开发自己的Volume插件,只需要实现Volume.go里定义的接口。如果你是一个存储厂商,想要自己的存储支持Kubernetes上运行的容器,就可以去开发一个自己的Volume插件。
2.persistent volume
它和普通Volume的区别是什么呢?
普通Volume和使用它的Pod之间是一种静态绑定关系,在定义Pod的文件里,同时定义了它使用的Volume。Volume是Pod的附属品,我们无法单独创建一个Volume,因为它不是一个独立的K8S资源对象。
而Persistent Volume简称PV是一个K8S资源对象,所以我们可以单独创建一个PV。它不和Pod直接发生关系,而是通过Persistent Volume Claim,简称PVC来实现动态绑定。Pod定义里指定的是PVC,然后PVC会根据Pod的要求去自动绑定合适的PV给Pod使用。