㈠ 使命召唤6现代战争 安装后为什么提示的是视频卡或驱动程序不支持顶点着色器3.0或更高 高人指点一下
下载一个驱动精灵更新一下显卡驱动,如果还不行的话就是显卡不行了,要玩这游戏的话得换显卡
㈡ 使命召唤6运行时弹出错误提示,谁能告诉我是什么问题
-----客户端初始化完成-----
尝试22千赫16位[Windows默认]声音
----- ----- R_Init
使用的Direct3D 9接口...
像素着色器版本是2.0
顶点着色器版本是0.0
视频卡或驱动程序不加快改造和照明。
视频卡或驱动程序不支持UBYTE4N顶点数据。
在初始化错误:
视频卡或驱动程序不支持UBYTE4N顶点数据
完整-----尝试健康-----R_Init———到达 Direct3D 9界面44 kHz 16小块[视窗未履行〕客户预置...像素遮盖者版本是2.0顶点遮盖者版本是0.0图像卡或者司机不确实加速变换和照明。图像卡或者司机不确实支撑 UBYTE4N 顶点数据。 在预置期间的在中的错误:图像卡或者司机不确实支撑 UBYTE4N 顶点数据。
㈢ failed to create vertex shader
上面的错误信息是:顶点着色器创建失败。或许是你的显卡达不到这模拟器的shader model的最低配置。
㈣ glsl语言和c语言的区别·也就是不同的地方有哪些,明确点。谢谢喽
变量
GLSL的变量命名方式与C语言类似。变量的名称可以使用字母,数字以及下划线,但变量名不能以数字开头,还有变量名不能以gl_作为前缀,这个是GLSL保留的前缀,用于GLSL的内部变量。当然还有一些GLSL保留的名称是不能够作为变量的名称的。
基本类型
除了布尔型,整型,浮点型基本类型外,GLSL还引入了一些在着色器中经常用到的类型作为基本类型。这些基本类型都可以作为结构体内部的类型。如下表:
类型 描述
void 跟C语言的void类似,表示空类型。作为函数的返回类型,表示这个函数不返回值。
bool 布尔类型,可以是true 和false,以及可以产生布尔型的表达式。
int 整型 代表至少包含16位的有符号的整数。可以是十进制的,十六进制的,八进制的。
float 浮点型
bvec2 包含2个布尔成分的向量
bvec3 包含3个布尔成分的向量
bvec4 包含4个布尔成分的向量
ivec2 包含2个整型成分的向量
ivec3 包含3个整型成分的向量
ivec4 包含4个整型成分的向量
mat2 或者 mat2x2 2×2的浮点数矩阵类型
mat3或者mat3x3 3×3的浮点数矩阵类型
mat4x4 4×4的浮点矩阵
mat2x3 2列3行的浮点矩阵(OpenGL的矩阵是列主顺序的)
mat2x4 2列4行的浮点矩阵
mat3x2 3列2行的浮点矩阵
mat3x4 3列4行的浮点矩阵
mat4x2 4列2行的浮点矩阵
mat4x3 4列3行的浮点矩阵
sampler1D 用于内建的纹理函数中引用指定的1D纹理的句柄。只可以作为一致变量或者函数参数使用
sampler2D 二维纹理句柄
sampler3D 三维纹理句柄
samplerCube cube map纹理句柄
sampler1DShadow 一维深度纹理句柄
sampler2DShadow 二维深度纹理句柄
结构体
结构体
结构体可以组合基本类型和数组来形成用户自定义的类型。在定义一个结构体的同时,你可以定义一个结构体实例。或者后面再定义。
struct surface {float indexOfRefraction;
vec3 color;float turbulence;
} mySurface;
surface secondeSurface;
你可以通过=为结构体赋值,或者使用 ==,!=来判断两个结构体是否相等。
mySurface = secondSurface;
mySurface == secondSurface;
只有结构体中的每个成分都相等,那么这两个结构体才是相等的。访问结构体的内部成员使用. 来访问。
vec3 color = mySurface.color + secondSurface.color;
结构体至少包含一个成员。固定大小的数组也可以被包含在结构体中。GLSL的结构体不支持嵌套定义。只有预先声明的结构体可以嵌套其中。
struct myStruct {
vec3 points[3]; //固定大小的数组是合法的
surface surf; //可以,之前已经定义了
struct velocity { //不合法float speed;
vec3 direction;
} velo;
subSurface sub; //不合法,没有预先声明;};struct subSurface { int id;
};
数组
GLSL中只可以使用一维的数组。数组的类型可以是一切基本类型或者结构体。下面的几种数组声明是合法的:
surface mySurfaces[];
vec4 lightPositions[8];
vec4 lightPos[] = light www.hnne.com Positions;const int numSurfaces = 5;
surface myFiveSurfaces[numSurfaces];float[5] values;
指定显示大小的数组可以作为函数的参数或者使返回值,也可以作为结构体的成员.数组类型内建了一个length()函数,可以返回数组的长度。
lightPositions.length() //返回数组的大小 8
最后,你不能定义数组的数组。
修饰符
变量的声明可以使用如下的修饰符。
修饰符 描述
const 常量值必须在声明是初始化。它是只读的不可修改的。
attribute 表示只读的顶点数据,只用在顶点着色器中。数据来自当前的顶点状态或者顶点数组。它必须是全局范围声明的,不能再函数内部。一个attribute可以是浮点数类型的标量,向量,或者矩阵。不可以是数组或则结构体
uniform 一致变量。在着色器执行期间一致变量的值是不变的。与const常量不同的是,这个值在编译时期是未知的是由着色器外部初始化的。一致变量在顶点着色器和片段着色器之间是共享的。它也只能在全局范围进行声明。
varying 顶点着色器的输出。例如颜色或者纹理坐标,(插值后的数据)作为片段着色器的只读输入数据。必须是全局范围声明的全局变量。可以是浮点数类型的标量,向量,矩阵。不能是数组或者结构体。
centorid varying 在没有多重采样的情况下,与varying是一样的意思。在多重采样时,centorid varying在光栅化的图形内部进行求值而不是在片段中心的固定位置求值。
invariant (不变量)用于表示顶点着色器的输出和任何匹配片段着色器的输入,在不同的着色器中计算产生的值必须是一致的。所有的数据流和控制流,写入一个invariant变量的是一致的。编译器为了保证结果是完全一致的,需要放弃那些可能会导致不一致值的潜在的优化。除非必要,不要使用这个修饰符。在多通道渲染中避免z-fighting可能会使用到。
in 用在函数的参数中,表示这个参数是输入的,在函数中改变这个值,并不会影响对调用的函数产生副作用。(相当于C语言的传值),这个是函数参数默认的修饰符
out 用在函数的参数中,表示该参数是输出参数,值是会改变的。
inout 用在函数的参数,表示这个参数即是输入参数也是输出参数。
内置变量
内置变量可以与固定函数功能进行交互。在使用前不需要声明。顶点着色器可用的内置变量如下表:
名称 类型 描述
gl_Color vec4 输入属性-表示顶点的主颜色
gl_SecondaryColor vec4 输入属性-表示顶点的辅助颜色
gl_Normal vec3 输入属性-表示顶点的法线值
gl_Vertex vec4 输入属性-表示物体空间的顶点位置
gl_MultiTexCoordn vec4 输入属性-表示顶点的第n个纹理的坐标
gl_FogCoord float 输入属性-表示顶点的雾坐标
gl_Position vec4 输出属性-变换后的顶点的位置,用于后面的固定的裁剪等操作。所有的顶点着色器都必须写这个值。
gl_ClipVertex vec4 输出坐标,用于用户裁剪平面的裁剪
gl_PointSize float 点的大小
gl_FrontColor vec4 正面的主颜色的varying输出
gl_BackColor vec4 背面主颜色的varying输出
gl_FrontSecondaryColor vec4 正面的辅助颜色的varying输出
gl_BackSecondaryColor vec4 背面的辅助颜色的varying输出
gl_TexCoord[] vec4 纹理坐标的数组varying输出
gl_FogFragCoord float 雾坐标的varying输出
片段着色器的内置变量如下表:
名称 类型 描述
gl_Color vec4 包含主颜色的插值只读输入
gl_SecondaryColor vec4 包含辅助颜色的插值只读输入
gl_TexCoord[] vec4 包含纹理坐标数组的插值只读输入
gl_FogFragCoord float 包含雾坐标的插值只读输入
gl_FragCoord vec4 只读输入,窗口的x,y,z和1/w
gl_FrontFacing bool 只读输入,如果是窗口正面图元的一部分,则这个值为true
gl_PointCoord vec2 点精灵的二维空间坐标范围在(0.0, 0.0)到(1.0, 1.0)之间,仅用于点图元和点精灵开启的情况下。
gl_FragData[] vec4 使用glDrawBuffers输出的数据数组。不能与gl_FragColor结合使用。
gl_FragColor vec4 输出的颜色用于随后的像素操作
gl_FragDepth float 输出的深度用于随后的像素操作,如果这个值没有被写,则使用固定功能管线的深度值代替
表达式
操作符
GLSL语言的操作符与C语言相似。如下表(操作符的优先级从高到低排列)
操作符 描述
() 用于表达式组合,函数调用,构造
[] 数组下标,向量或矩阵的选择器
. 结构体和向量的成员选择
++ – 前缀或后缀的自增自减操作符
+ – ! 一元操作符,表示正 负 逻辑非
* / 乘 除操作符
+ - 二元操作符 表示加 减操作
<> <= >= == != 小于,大于,小于等于, 大于等于,等于,不等于 判断符
&& || ^^ 逻辑与 ,或, 异或
?: 条件判断符
= += –= *= /= 赋值操作符
, 表示序列
像 求地址的& 和 解引用的 * 操作符不再GLSL中出现,因为GLSL不能直接操作地址。类型转换操作也是不允许的。 位操作符(&,|,^,~, <<, >> ,&=, |=, ^=, <<=, >>=)是GLSL保留的操作符,将来可能会被使用。还有求模操作(%,%=)也是保留的。
数组访问
数组的下标从0开始。合理的范围是[0, size - 1]。跟C语言一样。如果数组访问越界了,那行为是未定义的。如果着色器的编译器在编译时知道数组访问越界了,就会提示编译失败。
vec4 myColor, ambient, diffuse[6], specular[6];
myColor = ambient + diffuse[4] + specular[4];
构造函数
构造函数可以用于初始化包含多个成员的变量,包括数组和结构体。构造函数也可以用在表达式中。调用方式如下:
vec3 myNormal = vec3(1.0, 1.0, 1.0);
greenTint = myColor + vec3(0.0, 1.0, 0.0);
ivec4 myColor = ivec4(255);
还可以使用混合标量和向量的方式来构造,只要你的元素足以填满该向量。
vec4 color = vec4(1.0, vec2(0.0, 1.0), 1.0);
vec3 v = vec3(1.0, 10.0, 1.0);
vec3 v1 = vec3(v);
㈤ 在线等答案【【【【【【【妈妈说标题要长】】】】】COD5 unhandled exception caught 问题
你如果想问问题至少说清楚一些情况吧,前面的是系统加载项的说明,告诉你显卡在运行时选择的效果和调用的内存大小,以及自检,看起来显卡硬件似乎是达到游戏要求的,512M显存?但是在最后加载“水滴特效”,和“动态水流特效”,的时候失败了,你说机器配置没问题,那么建议还是重新装系统驱动吧,是否是驱动缺少文件,或者是游戏少文件,造成某些文件读取错误。总之是文件缺损,重装系统,或者显卡驱动,或者重装游戏。暂时只能提到这么多了。
㈥ 顶点着色器是什么
对显卡的性能影响很大,是显卡的主要参数之一。
什么是顶点着色器?
1 顶点着色器是一组指令代码,这组指令代码在顶点被渲染时执行。
2 同一时间内,只能激活一个顶点着色器。
3 每个源顶点着色器最多拥有128条指令(DirextX8.1),而在DirectX9,则可以达到256条。
为什么大家要使用顶点着色器?
1 顶点着色器可以提高渲染场景速度。
2 用顶点着色器你可以做布类仿真,高级别动画,实时修改透视效果(比如水底效果),高级光亮(需要像素着色器支持)
顶点着色器如何运作?
简单说来,运作方式如下:当渲染一个顶点时,API会执行你在顶点着色器中所写的指令。依靠这种方法,你可以自己控制每个顶点,包括渲染,确定位置,是否显示在屏幕上。
如何创建一个顶点着色器?
用一个文本编辑器就可以了!我建议你们使用notepad或者vs开发环境来创建和修改着色器。另外,必须拥有一个支持可编程着色器的显卡。写完着色器后,保存他。API就可以调用他了(Direct3D或OpenGL)。API通过一些函数来调用这些代码指令到硬件中。
什么是像素着色器?
1 像素着色器也是一组指令,这组指令在顶点中像素被渲染时执行。在每个执行时间,都会有很多像素被渲染。(像素的数目依靠屏幕的分辨率决定)
2像素着色器的指令和顶点着色器的指令非常接近。像素着色器不能像顶点着色器那样,单独存在。他们在运行的时候,必须有一个顶点着色器被激活。
为什么大家要使用像素着色器?
1 像素着色器过去是一种高级图形技术,专门用来提高渲染速度。
2 和顶点着色器一样,使用像素着色器,程序员能自定义渲染每个像素。
像素着色器如何运作?
一个像素着色器操作顶点上单独的像素。和顶点着色器一样,像素着色器源代码也是通过一些API加载到硬件的。
如何创建一个像素着色器?
也和顶点着色器一样,你只需要一个文本编辑器和支持着色器编程的显卡即可。同样,API(Direct3D OpenGL)加载像素着色器代码指令到硬件中。
㈦ 请问我的电脑为什么会弹出 你的显卡或驱动程序不支持着色器2.0 请升级
首先,顶点着色器2.0的含义你可以先学习下:
顶点着色器(vertex shader)是一个在图形卡的GPU上执行的程序,它替换了固定功能管线(fixed function pipeline)中的变换(transformation)和光照(lighting)阶段。(这不是百分之百的正确,因为顶点着色器可以被Direct3D运行时(Direct3D runtime)以软件模拟,如果硬件不支持顶点着色器的话)。
简单的说,就是在游戏开发时,会以当前的API接口为标准开发新游戏;你的显卡属于集成显卡级别,也没有数据表明你的显卡支持顶点着色器2.0,因此是不支持该游戏的!从你的配置看,主板为880GM集成显卡主板,在游戏性能方便实属不强!
建议你直接增加一片独立显卡,以彻底解决该问题;可以选择市面上流行的GT430、GT440、GT550等系列显卡,价位从350~850不等!
㈧ 显卡上象素渲染管线和顶点着色器问题
不是啊 !!! 恰恰相反 渲染管线和顶点的数量越多 代表显卡的性能 越强劲
渲染管线也称为渲染流水线,是显示芯片内部处理图形信号相互独立的的并行处理单元。在某种程度上可以把渲染管线比喻为工厂里面常见的各种生产流水线,工厂里的生产流水线是为了提高产品的生产能力和效率,而渲染管线则是提高显卡的工作能力和效率。
顶点着色单元是显示芯片内部用来处理顶点(Vertex)信息并完成着色工作的并行处理单元。顶点着色单元决定了显卡的三角形处理和生成能力,所以也是衡量显示芯片性能特别是3D性能的重要参数。
㈨ WebGL的顶点着色器编译失败,问题,怎么解决
WebGL里有顶点着色器和片段着色器两种着色器。无论哪一种都可以使用GLSL来编写。顶点着色器和片段着色器是相互依赖的,缺一不可,并且首先被调用的是顶点着色器。
㈩ 幻想大陆进不去,说顶点着色器初始化失败,进去选好人后点进去游戏,弹出错误:
明显是你的显卡驱动有问题,卸载目前的显卡驱动换一个新的尝试下,如果新的有问题就换一个老的稳定版本的驱动。建议你顺便把DirectX 9.0c 也装一下,也可能是这个问题