导航:首页 > 源码编译 > patchbuild编译

patchbuild编译

发布时间:2022-07-20 00:17:13

㈠ 如何编译OpenWrt

Openwrt 官方正式的发行版是已编译好了的映像文件(后缀名bin或trx、trx2),此映像文件可从Openwrt官方网站的下载页面中轻松获取到,连接地址为 OpenWrt官方网站。这些编译好的映像文件是基于默认的配置设置,且只针对受支持的平台或设备的。因此,为什么要打造一个自己的映像文件,理由有以下四点:
您想拥有一个个性化的配置OpenWrt(彰显个性,在朋友圈子里显摆显摆,开个玩笑);
您想在实验性的平台上测试OpenWrt;
您参与测试或参与开发OpenWrt的工作;
或者,最简单的目的就是为了保持自己的Openwrt为最新版本;
若想实现上述目的,其实很简单,按下述文字即可成功编译出一个您的Openwrt来。
准备工作
在开始编译Openwrt之前需要您做些准备工作;与其他编译过程一样,类似的编译工具和编译环境是必不可少的:
一个构建OpenWrt映像的系统平台,简单说就是准备一个操作系统(比如Ubuntu、Debian等);
确保安装了所需的依赖关系库, (在debian系统中就是安装各种需要的软件包)
OpenWrt源代码副本
首先, 开机登陆到支持编译Openwrt的操作系统(废话了)。实体机或者虚拟机(Vmware 或者 Qemu)里的操作系统都行,这里推荐使用linux系统。 bsd和mac osx系统也可以编,但不推荐,且未验证是否可编译成功。下文假定您使用的是Debian操作系统,使用 apt-get 来管理包. 替代的选择是 Ubuntu (分支 Kubuntu, Xubuntu 等即可)。
第二步, 就是安装所需要的各种软件包, 包括编译器,解压工具,特定的库等. 这些工作可以简单的通过键入以下命令 (通常需要root 或者是 sudo 权限),以root权限安装下列软件包(可能并不完整,会有提示,提示缺少即装就可以了):
32位(x86)请执行下列命令:
# apt-get install build-essential asciidoc binutils bzip2 gawk gettext \
git libncurses5-dev libz-dev patch unzip zlib1g-dev

64位(x86_64)请执行下列命令(多装了哪些库或软件包呢?请您仔细看一看哦):
# apt-get install build-essential asciidoc binutils bzip2 gawk gettext \
git libncurses5-dev libz-dev patch unzip zlib1g-dev ia32-libs \
lib32gcc1 libc6-dev-i386

参考 本列表中 所列的编译环境所需要软件包或库。
某些依赖的为库或软件包也许操作系统中已经安装过,此时apt-get会作出提示(提示您忽略或重新安装的),别紧张,放轻松些,编译Openwrt不会像编译DD-WRT那样难的(至少本人是体会到了编译DD-WRT的难)。
最后下载一份完整的 Openwrt 源码到编译环境中。关于Openwrt的源代码下载,途径有二,一是通过 svn ,一是通过 git,建议使用 svn ,因为Openwrt主要以 svn 来维护Openwrt系统的版本。另外,请注意Openwrt中不同的分支版本,一个是用得较多的开发快照,俗称 trunk,二是稳定版,俗称 backfire。
安装Subversion
若你想通过svn下载源代码,你需安装 Subversion。Subversion,或称SVN, 是OpenWrt的project中用来控制版本的系统,它非常类似的 CVS的界面和使用条款。 执行下述命令即可安装SVN,很容易的:
# apt-get install subversion

Subversion安装完毕,通过SVN命令可获取得到一份OpenWrt纯净源代码。您还得创建一个目录以便存放获取得到的Openwrt源代码,要获取源代码你还得输入subversion命令来获取 (svn里这种操作称之为'check out') 。命令很简单的,继续看下去就能见到了,别着急,耐心点儿。
编译流程
编译专属于您的设备的特定Openwrt固件以一下五个步骤:
通过Subversion命令获得源代码;
更新(或安装) package feeds〔package feeds无法确切翻译,待译吧);
创建一个默认配置以检查编译环境是否搭建好了 (假如需要的话);
用Menuconfig来配置即将编译生成的固件映像文件的配置项;
最后开始编译固件;
下载源代码
最后,下载一份完整的OpenWrt源代码。你可选择:
下载稳定发行版,或
下载开发版 (俗称"trunk"版)。
使用发行版的源码
截止本文时, Openwrt公开发行的稳定版为 OpenWrt 10.03 "backfire"。此版本是最稳定的,但也许不包括最新更新的补丁或最新编写的出的新功能。
下述代码即举例说明了通过svn从brandkfire获得backfire源代码(此版本意思是从trunk分支的补丁也在backfire版本中了,即包含修复补丁):
# mkdir OpenWrt/
# cd OpenWrt/
# svn co svn://svn.openwrt.org/openwrt/branches/backfire

注解: 上述svn命令将在当前目录创建一个 OpenWrt/backfire/ 子目录,此目录包含此命令获取到的源代码。
您也可以通过下述命令,下载不含修复补丁的backfire的原版源码:
# svn co svn://svn.openwrt.org/openwrt/tags/backfire_10.03

使用开发版源代码
当前的开发版本分支(trunk)已包含最新的实验补丁。此分支或许还突破了Openwrt原来所不支持的硬件设备的限制哦,惊喜的同时也有风险存在。因此,编译trunk版,慎之~
# mkdir OpenWrt/
# cd OpenWrt/
# svn co svn://svn.openwrt.org/openwrt/trunk/

更多详细资料详见: https://dev.openwrt.org/wiki/GetSource.
跟进并更新源代码
因Openwrt的源代码随时都会变动,故此命令将确保您所获取得到的源码的最新性。下述假设您用的是backfire版本的源码:
## Here, backfire is the directory name of the current release branch you're tracking
# cd OpenWrt/backfire/
# svn up

'svn up' 命令用于更新SVN上更新了,但本地尚未更新的这部分源代码(本人实践证明此命令会将本地源码与SVN上的源码先比较,若SVN有更新才会下载更新的部分,很实用的一个命令)。如果未指定目标路径,则此命令将更新当前目录及当前目录的子目录内的源码。
Feeds下载
Feeds即为包含到你的OpenWrt环境中的额外软件包的索引之类的。(feed译名很多,莫衷一是,至2008年底为止,还没有一个十分通用而备受认可的中文译名;所以此文当中我们用英文feed来称呼)。 最主要的Feeds有以下三个:
'packages' - 路由的基本功能,
'LuCI' - OpenWrt默认的GUI(WEB管理界面), 及
'Xwrt' - 其他的GUI。
一般情况,你至少需要含 'packages' 和 'LuCI'两个Feeds。
下载完feeds之后, (为编译OpenWrt的recipies额外的预定义包) 您可以检查哪些feeds要包括在内。编辑在你的编译环境的根目录下的'feeds.conf.default'文件。
然后使用下列命令开始下载(注:可能你需要先运行cd trunk进入trunk目录才能成功执行下列命令):
# ./scripts/feeds update -a

在此之后,下载的软件包需要安装。亦即指的下边的命令啦。若路过下边的install命令则后续make menuconfig将无法成功执行!(注:可能你需要先运行cd trunk进入trunk目录才能成功执行下列命令):
# ./scripts/feeds install -a

只需编辑Feeds的配置文件或运行更新命令,即可很方便地更新或添加新的实验性的packages到源码中并编译到OpenWrt固件去。
注意:请老坛友及旧的新闻组成员们注意了,这一步取代了创建符号链接symlinks的老办法哦。
更新Feeds
诸如此类源码,你得定期更新Feeds。 通过如上相同的命令:
# ./scripts/feeds update -a
# ./scripts/feeds install -a

注意:若你清楚地知道你不需添加新的packages到menuconfig中去,那么你可在更新Feeds时跳过这一步。
生成配置
You may not have to make configration always after updating sources and feeds, but making it ensures that all packages from source and feeds are correctly included in your build configuration.
Defconfig
下一步是检查编译环境,若可进行编译则生成默认配置:
# make defconfig

若defconfig回显提示缺少软件包或编译库等依赖,则按提示安装所缺软件包或库等即可,不难的,细心点就行。
Menuconfig
menuconfig是一个基于文本的工具,它处理选择的目标(需要还是不需要)、编译生成软件包(openwrt下是IPKG格式)以及内核选项(编译成模块还是内核)等等
# make menuconfig

在你离开并保存配置文件(默认都是.config)后,将自动配置依赖关系,让你可以着手编译更新的固件。
大众可通过'menuconfig'这一简单的图形化的配置环境,非常轻松地编译出专属您本人的OpenWrt固件。
可以用'menuconfig',以开发的意图来编译OpenWrt的固件,为自己(个人)创造一个结构简单但是功能强大的环境。(上句实在难翻译,只能意译。并且也请大家都学习下编译OP固件,让以OP固件盈利的人丢掉那肮脏的饭碗!)
Menuconfig或多或少有些难以说明的地方,即使是最专业的配置,也可以寻求帮助并加以解决。 需要你指定何种目标平台,要包含的package软件包和内核模块等均需要你指定,配置标准的过程中会包括修改:
目标平台(即路由器何种架构,BCM呢还是AR均可选择)
选择要包含的package软件包
构建系统设置
内核模块
Target system is selected from the extensive list of supported platforms, with the numerous target profiles – ranging from specific devices to generic profiles, all depending on the particular device at hand. Package selection has the option of either 'selecting all package', which might be un-practical in certain situation, or relying on the default set of packages will be adequate or make an indivial selection. It is here needed to mention that some package combinations might break the build process, so it can take some experimentation before the expected result is reached. Added to this, the OpenWrt developers are themselves only maintaining a smaller set of packages – which includes all default packages – but, the feeds-script makes it very simple to handle a locally maintained set of packages and integrate them in the build-process.
假如你需要LuCI, 要到Administration 菜单里,在LuCI组件的子菜单下, 并选择: luci-admin-core, luci-admin-full, and luci-admin-mini组件包。
假如你不需要PPP,你可到Network菜单下取消对它的选择,以便编译时不包含此组件。
Menuconfig用法: 确保这些组件包是以 '*'星号标记而不是 'M'标记。
如果你是以星号 '*'标记该组件包, 则该组件包将编译进最终生成的OpenWrt固件中。
如果你仅以 'M'标记该组件包, 则该组件包将不会编译进最终生成的OpenWrt固件中。
The final step before the process of compiling the intended image(s) is to exit 'menuconfig' – this also includes the option to save a specific configuration or load an already existing, and pre-configured, version.
Exit and save.
Source Mirrors
The 'Build system settings' include some efficient options for changing package locations which makes it easy to handle a local package set:
Local mirror for source packages
Download folder
In the case of the first option, you simply enter a full URL to the web or ftp server on which the package sources are hosted. Download folder would in the same way be the path to a local folder on the build system (or network). If you have a web/ftp-server hosting the tarballs, the OpenWrt build system will try this one before trying to download from the location(s) mentioned in the Makefiles . Similar if a local 'download folder', residing on the build system, has been specified. The 'Kernel moles' option is required if you need specific (non-standard) drivers and so forth – this would typically be things like moles for USB or particular network interface drivers etc.
编译固件
万事具备,只欠东风,通过下面简单的make命令来编译:
# make

在多核电脑中编译
具有多核CPU处理器的电脑进行编译,使用下述参数可令编译过程加速。 常规用法为 <您cpu处理器的数目 + 1> – 例如使用3进程来编译 (即双核CPU), 命令及参数如下:
# make -j 3

后台编译
若你在这个系统内编译OpenWrt的同时还处理其他,可以让闲置的I/O及CPU来在后台编译固件 (双核CPU):
# ionice -c 3 nice -n 20 make -j 2

编译简单的基本的软件包
当你为OpenWrt开发或打包软件包,编译简单的基本的软件包可以很轻易地编译该软件包 (例如, 软件包cups):
# make package/cups/compile V=99

一个在Feeds里的软件包大约是这样子的:
# make package/feeds/packages/ndyndns/compile V=99

编译错误
如果因某种不知道的原因而编译失败,下面有种简单的方法来得知编译到底错在哪里了:
# make V=99 2>&1 |tee build.log |grep -i error

上述编译命令意为:V99参数,将出错信息保存在build.log,生成输出完整详细的副本(with stdout piped to stderr),只有在屏幕上显示的错误。
举例说明:
# ionice -c 3 nice -n 20 make -j 2 V=99 CONFIG_DEBUG_SECTION_MISMATCH=y 2>&1 \
|tee build.log |egrep -i '(warn|error)'

The above saves a full verbose of the build output (with stdout piped to stderr) in build.log and outputs only warnings and errors while building using only background resources on a al core CPU.
一键编译
即使用脚本来编译Openwrt固件。许多朋友编译Openwrt是用的脚本来编译的,详见: https://forum.openwrt.org/viewtopic.php?id=28267
生成的固件在哪
编译成功后所生成的固件文件位于bin目录下,可用如下命令查看:
# cd bin/
# ls */

清理
编译OpneWrt时你可能需要一个清洁干净的编译环境。 以下操作有利用编译工作:
清洁
清洁trunk/ 目录,在编译过程中使用“make clean”命令即可。 此命令将删除bin目录和build_dir目录下的所有文件及文件夹
## See CAUTION below
# make clean

㈡ lfs的Linux From Scratch项目简称

Linux From Scratch项目简称LFS,它提供具体的步骤、特定的补丁、必须的脚本,从而提供一个简便的创建Linux发行版的途径。LFS并不是一个发行版,但是它可以作为制作初级发行版的良好练习。 制作过程
快速浏览官方文档即可(没必要仔细翻阅,抓几个关键点即可) 一般套路
以下步骤在LFS制作中会重复几次乃至几十次: 1,
tar xf foo-version.tar.*
cd foo-version
./configure --prefix=xxx --xxx=xxxx ······
make
make install
cd ..
rm -rf foo-version
2,
tar xf foo-version.tar.*
cd foo-version
patch -Np1 -i ../xxx.patch
mkdir ../foo-build
cd foo-build
../foo-version/configure --prefix=xxx --xxx=xxxx ······
make
make install
cd ..
rm -rf foo-version foo-build
具体编译参数复制文档中对应部分即可 实际意义
LFS的意义不在于机械地编译,事实上,按照文档描述,简单地点击键盘即可生成一个简略的发行版,这并不是存在时间达13年的LFS的目的。LFS的意义在于让使用者理解编译参数的作用,理解补丁的作用,理解LFS附带的脚本的工作过程,从而达到脱离LFS、独立制作并完善发行版的目的。
由于LFS提供的是一个通用的Linux发行版制作流程,LFS并不能保证制作最终产物符合制作者个人口味,也不能保证质量。

㈢ MTK的开发环境怎么搭建

一、开发环境设立
以下表述中提到的相关压缩包或安装文件到华禹ftp服务器下载,部分文件要到群共享里面下,那里是最新的。
华禹ftp服务器:IP:220.113.15.15,帐号为study-bbs.com,密码为study-bbs0304
P1300的QQ群号: 15762255
P1300_Build_Guide.rar来自ftp服务器,“华禹\MTK相关部分”目录下
手机开发板C语言开发视频.rar来自ftp服务器,“华禹\MTK相关部分”目录下
huayu109_ads1.2.rar来自ftp服务器,“华禹\旋风001手机模块\1.工具类”目录下
huayu102_ADS12_Patch_Windows.rar同上
huayu106_perlzip.rar同上
huayu108_SourceInsight3.5.rar同上
huayu101_p1300软件使用工具及开发指南.rar同上
huayu201_P1300_V1.7_Release.rar文件来自群共享
huayu203_P1300_V1.7_Release_patch.rar文件来自群共享
FlashTool_v3.0844.00.rar文件来自群共享
1、开发主机要求及所需工具:
操作系统:Windows 2000, WinXP. 推荐Windows 2000 with SP2 or later.
编 译 器:ADS (Arm Developer Suite) v1.2 [Build 842]
Perl解析:ActivePerl, 推荐使用ActivePerl 5.6.1版本
仿真工具:MTK PC Simulator
跟踪工具:Catcher_L1 v3.10.01,从串口输出调试信息,只做普通UI应用的话,大致不会用到,用PC仿真工具就好了
烧录工具:FlashTool_UI v3.1.05 或 FlashTool_v3.0844.00
其他:PL2303_Driver_XP2K v20,这是下载线用到的USB串口驱动,以前机器上装过PL2303驱动的就不必再装了
二、开发环境建立过程:
新建一个目录,英文的好了,否则有些工具不认识中文路径,这里以E:\MTK_P1300为例说明,下面我用文字和图片简单说明下安装过程,更详细的安装过程可以看压缩文件“手机开发板C语言开发视频.rar”中的Flash文件“P1300_Build_Env.swf”。
(1)安装ADS1.2
解压文件huayu109_ads1.2.rar到某个目录,比如说解压到“E:\MTK_P1300”,解压完后运行“E:\MTK_P1300\ADS1.2\Setup.exe”,一路按下一步,最后安装License时选定文件“E:\MTK_P1300\ADS1.2\CRACK\ license.dat”,然后接着一路下一步直到安装完。安装完后删掉目录“E:\MTK_P1300\ADS1.2\”,节省磁盘空间。
(2)安装ADS补丁
运行huayu102_ADS12_Patch_Windows.rar压缩文件中的ADS_Patch_Window.exe,这是个自解压的压缩文件,选Unzip解压到上一步ADS的安装目录(缺省是C:\Program Files\ARM\ADSv1_2),解压过程中如果问到是否覆盖,全部选覆盖好了。
(3)安装脚本解释器Perl
直接运行压缩包huayu106_perlzip.rar里面扩展名为msi的安装文件,缺省安装就好,一路Next,呵呵。
上述几步完成后,编译环境基本建立,此时可以开一个dos窗(开始菜单->运行->输入cmd->确定)看一下,安装正常应该能顺利执行以下命令,如下图:
注意看版本号,应该是ADS1.2 [Build 842],不是的话可能没打补丁,或补丁打的位置不对,请看第2步ADS补丁部分的说明并重新打一次,直到版本号对为止,哈哈。
这是perl解释器的运行画面。
注1:上述安装过程会自动创建编译环境所需的环境变量,如果发现编译不正常了,可能是安装了其他编译工具导致冲突,这时建议查看下系统环境变量,把Perl和ADS的安装目录调到最前面,同时从path中去掉可能会产生冲突的编译工具链的路径(例如winavr),如下图所示(我是安装到D盘滴,缺省是C盘,不过我C盘几乎被我塞满了):
如果嫌改path麻烦(因为要用到其他编译工具链的时候还得改回去),还有一种办法,就是改make.bat批处理,具体见注4中相关说明。
注2: 如果安装ADS时,改变了默认安装路径,需要修改源码中的设置,源码目录树解压过程见模拟器编译环节相关介绍。
1.             make\Option.mak  
2.             ----------------------------------  
3.             ifeq ($(strip $(COMPILER)),ADS)  
4.           DIR_ARM=  c:\progra~1\arm\adsv1_2  # 修改这里 
5.           DIR_ARM := $(strip $(DIR_ARM))  
6.           DIR_TOOL   =  $(DIR_ARM)\bin  
7.           DIR_ARMLIB =  $(DIR_ARM)\lib  
8.           DIR_ARMINC =  $(DIR_ARM)\include  
9.             endif  
10.       ------------------------------------------------ 
比如改装到D盘了,这里把红色部分“c”改成“d”就好了
(4)代码编辑环境
运行压缩文件huayu108_Source Insight3.5.rar中的安装文件安装即可。至于编辑器,这个看个人喜好了,不过Source Inside看代码蛮方便的。
(5)PC机模拟器
模拟器MTK PC Simulator是用来在PC上仿真调试用的,要安装VC6 SP6(同时要安装Uuicode 静态和动态库,没有装Unicode库的可以用“huayu103_MTK模拟器DLL补丁.zip”中的库,拷到系统目录“%windir%\system32”下即可)。我机器上的VC是有装Unicode库的,没装过Unicode库的如果在模拟器编译或运行中出现问题,建议重装下VC6,安装时勾选Unicode库,并打上相关补丁到SP6。
模拟器能模拟真机的大部分行为,这样能给调试带来很大便利,不需要每次改动都要烧录。
模拟器要从源码编译,解压压缩包“huayu201_P1300_V1.7_Release.rar”里面的文件“HUAYU_P1300_V1.7_Release.rar”到目录“E:\MTK_P1300”,此时会出现目录“E:\MTK_P1300\P1300_V1.7_Release”,这就是P1300的代码目录树了;接着打上最新的补丁,解压压缩包“huayu203_P1300_V1.7_Release_patch.rar”里面的压缩文件“HUAYU_P1300_V1.7_Release_patch.rar”到目录
“E:\MTK_P1300\P1300_V1.7_Release”,解压时选择全覆盖以替换被修改过的文件,打补丁之前对目录树里面的文件进行修改过的,需要手动再加上去。
编译PC仿真器之前需要先把刚才上面得到的目录树build一次,开一个dos窗,盘符和目录转到代码目录树对应的盘符和目录,例如:
1.              E:  
2.             cd E:\MTK_P1300\P1300_V1.7_Release\  
3.           make new 
注3:第一次make的时候要用“make new”,make new的时间比较长(慢的机器搞不好要2小时以上),编译过程中间会出现一些文件找不到的信息,只要编译过程没意外终止,那些信息可以忽略。编译日志文件位置: build\NEOTEL25_06B\log\,要查看编译过程有啥问题就看这个目录下的文件了;生成的bin文件位置: build\NEOTEL25_06B\*.bin,下载烧录就是烧bin文件。
这里顺带介绍下build的命令格式:
make new 清除后重新编译整个项目
make resgen 重新生成资源
make remake重新编译链接项目
make viewlog xxx 查看模块xxx的编译日志
make查看可以用make选项帮助信息
注4:如果机器上装了其他gcc编译工具链(比如winavr之类)的话可能要手动改下Path,否则编译会出错,修改Path的方法见注1,也可以修改批处理文件“E:\MTK_P1300\P1300_V1.7_Release\make.bat”,在“perl make2.pl %*”之前加上下面两句:
1.           set PERL5LIB=D:\perl\lib  
2.           set PATH=D:\perl\bin;d:\progra~1\arm\adsv1_2\bin;E:\MTK_P1300\P1300_V1.7_Release\tools;c:\windows\system32;c:\windows;c:\windows\system 
注意,上面的路径是我机器上的,不是缺省安装路径,要根据自己的实际安装路径做修改。
下面开始编译PC仿真器了,用VC6打开工程文件“E:\MTK_P1300\P1300_V1.7_Release\plutommi\mmi\ PC_Simulator.dsw”,然后开始编译,编译时间比较长,具体看机器配置了,这时又可以干点别的啥了,呵呵。
因为仿真器工程涉及文件较多,编译费时,建议编译过程中电脑上少开窗口,特别是网络类的,如QQ,有时会发现开QQ后,编译过程中VC会挂死,呵呵。有可能是开QQ后防火墙过滤网络数据占用较多系统资源,如果发现VC编译特别慢或干脆挂死,可以重启动一下电脑,只开必要的窗口,然后开始编译。
如果编译过程中发现怪异的问题,如:
1.           incomingstringiddef.h(120) : error C2059: syntax error : 'constant'    
2.           或者 
3.           error C2065: 'STR_CM_REDIAL' : undeclared identifier   
4.           之类 
5.            
这个时侯你可能需要看一下你VC相关路径的设置顺序,如下图:
把VC原本的头文件路径调整到最前面,我刚开始编译的时候SDK的头文件在前面,编译总是通不过,改一下就好了,库也一样都调整下比较保险,呵呵。
(6)Tracer跟踪工具
解压文件P1300_Build_Guide.rar到E:\MTK_P1300,然后在文件管理器进入目录“E:\MTK_P1300\P1300_Build_Guide”,接着解压Catcher_L1_v3.10.01.zip到当前目录下的Catcher_L1_v3.10.01子目录,进入子目录Catcher_L1_v3.10.01,发送一个Catcher.exe的快捷方式到桌面。
在需要用到TRACE的时候,在代码中使用函数
void kal_prompt_trace(mole_type mod_id, const kal_char *fmt,...); 打印需要查看的信息,使用Catcher跟踪查看。
这个有点类似Linux的Kernel Debug工具,具体使用方法见文档《cather使用手册.doc》,这个文档可在压缩包“huayu101_p1300软件使用工具及开发指南.rar”里面找到。
(7)烧录工具
解压文件“E:\MTK_P1300\P1300_Build_Guide\ FlashTool_UI_exe_v3.1.05.zip”到当前目录,然后进入目录“E:\MTK_P1300\P1300_Build_Guide\FlashTool_v3.1.05”,发送一个Flash_tool.exe的快捷方式到桌面好了。
还有个下载工具FlashTool_v3.0844.00.rar,也是不用安装,解压后直接用的,据说烧录速度比上面那个快。
具体使用方法见文档《flash_tool_MT平台使用教程.doc》,这个文档可在压缩包“huayu101_p1300软件使用工具及开发指南.rar”里面找到。
(8)USB串口下载线驱动
运行压缩文件
1.           “E:\MTK_P1300\P1300_Build_Guide\ PL2303_Driver_XP2K_v20.zip” 
里面的可执行文件进行安装,一路下一步,这里不再赘述。
nucleus实时操作系统MTK手机软件系统工程和配置简介
MTK使用了nucleus实时操作系统,在其上做了个内核抽象层的封装,以适应多种实时操作系统,如oscar、ThreadX、nucleus。整个软件系统包括nucleus操作系统、平台设备驱动、协议栈、文件系统、WGUI、MMI、J2ME等。在这里MMI部分几乎包括了操作系统内核、协议栈、文件系统之上的所有部分,其中WGUI也在其中。
MTK的PC模拟版使用VC的编译器和链接器生成,ARM版使用ADS1.2的编译器和链接器生成。因为MTK的整个软件系统是一个很庞大而且复杂的工程,并且要支持多个MTK的产品系列和多家客户的客户化支持,使用集成开发环境(IDE)已经无法胜任,而且很难做到整个工程的自动构建和资源、代码的生成。所以MTK的软件系统使用了windows下的GNU开发工具链(MinGW)来进行工程的管理、配置和构建,MTK将MinGW放到了第三方工具中。
另外还使用了perl脚本来解析用户输入的命令行参数,因此第三方工具中还包含了ActivePerl(windows下的perl解释器)。不过,整个软件系统并没有使用MinGW的全部工具,好象只使用了make这个工具,由几个Makefile控制了构建的过程,在编译和链接时根据最终生成PC模拟版还是ARM版而分别调用VC的编译器和链接器或ADS1.2的编译器和链接器。

㈣ 如何建立Linux下的ARM交叉编译环境

这个过程如下
1. 下载源文件、补丁和建立编译的目录
2. 建立内核头文件
3. 建立二进制工具(binutils)
4. 建立初始编译器(bootstrap gcc)
5. 建立c库(glibc)
6. 建立全套编译器(full gcc)
下载源文件、补丁和建立编译的目录
1. 选定软件版本号
选择软件版本号时,先看看glibc源代码中的INSTALL文件。那里列举了该版本的glibc编译时所需的binutils 和gcc的版本号。例如在 glibc-2.2.3/INSTALL 文件中推荐 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我选的各个软件的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你选的glibc的版本号低于2.2,你还要下载一个叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 内核你可以从www.kernel.org 或它的镜像下载。
Binutils、gcc和glibc你可以从FSF的FTP站点ftp://ftp.gun.org/gnu/ 或它的镜像去下载。在编译glibc时,要用到 Linux 内核中的 include 目录的内核头文件。如果你发现有变量没有定义而导致编译失败,你就改变你的内核版本号。例如我开始用linux-2.4.25+vrs2,编译glibc-2.2.3 时报 BUS_ISA 没定义,后来发现在 2.4.23 开始它的名字被改为 CTL_BUS_ISA。如果你没有完全的把握保证你改的内核改完全了,就不要动内核,而是把你的 Linux 内核的版本号降低或升高,来适应 glibc。
Gcc 的版本号,推荐用 gcc-2.95 以上的。太老的版本编译可能会出问题。Gcc-2.95.3 是一个比较稳定的版本,也是内核开发人员推荐用的一个 gcc 版本。
如果你发现无法编译过去,有可能是你选用的软件中有的加入了一些新的特性而其他所选软件不支持的原因,就相应降低该软件的版本号。例如我开始用 gcc-3.3.2,发现编译不过,报 as、ld 等版本太老,我就把 gcc 降为 2.95.3。太新的版本大多没经过大量的测试,建议不要选用。

2. 建立工作目录
首先,我们建立几个用来工作的目录:
在你的用户目录,我用的是用户liang,因此用户目录为 /home/liang,先建立一个项目目录embedded。
$pwd
/home/liang
$mkdir embedded

再在这个项目目录 embedded 下建立三个目录 build-tools、kernel 和 tools。
build-tools-用来存放你下载的 binutils、gcc 和 glibc 的源代码和用来编译这些源代码的目录。
kernel-用来存放你的内核源代码和内核补丁。
tools-用来存放编译好的交叉编译工具和库文件。
$cd embedded
$mkdir build-tools kernel tools

执行完后目录结构如下:
$ls embedded
build-tools kernel tools

3. 输出和环境变量
我们输出如下的环境变量方便我们编译。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH

如果你不惯用环境变量的,你可以直接用绝对或相对路径。我如果不用环境变量,一般都用绝对路径,相对路径有时会失败。环境变量也可以定义在.bashrc文件中,这样当你logout或换了控制台时,就不用老是export这些变量了。
体系结构和你的TAEGET变量的对应如下表

你可以在通过glibc下的config.sub脚本来知道,你的TARGET变量是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu

在我的环境中,config.sub 在 glibc-2.2.3/scripts 目录下。
网上还有一些 HOWTO 可以参考,ARM 体系结构的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 体系结构的《Linux for PowerPC Embedded Systems HOWTO》等。对TARGET的选取可能有帮助。
4. 建立编译目录
为了把源码和编译时生成的文件分开,一般的编译工作不在的源码目录中,要另建一个目录来专门用于编译。用以下的命令来建立编译你下载的binutils、gcc和glibc的源代码的目录。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch

build-binutils-编译binutils的目录
build-boot-gcc-编译gcc 启动部分的目录
build-glibc-编译glibc的目录
build-gcc-编译gcc 全部的目录
gcc-patch-放gcc的补丁的目录
gcc-2.95.3 的补丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以从 http://www.linuxfromscratch.org/ 下载到这些补丁。
再将你下载的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代码放入 build-tools 目录中
看一下你的 build-tools 目录,有以下内容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz

建立内核头文件
把你从 www.kernel.org 下载的内核源代码放入 $PRJROOT /kernel 目录
进入你的 kernel 目录:
$cd $PRJROOT /kernel

解开内核源代码
$tar -xzvf linux-2.4.21.tar.gz


$tar -xjvf linux-2.4.21.tar.bz2

小于 2.4.19 的内核版本解开会生成一个 linux 目录,没带版本号,就将其改名。
$mv linux linux-2.4.x

给 Linux 内核打上你的补丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2

编译内核生成头文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 来代替 menuconfig,但这样用可能会没有设置某些配置文件选项和没有生成下面编译所需的头文件。推荐大家用 make menuconfig,这也是内核开发人员用的最多的配置方法。配置完退出并保存,检查一下的内核目录中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,这是编译 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也说明了你生成了正确的头文件。
还要建立几个正确的链接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc

接下来为你的交叉编译环境建立你的内核头文件的链接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm

也可以把 Linux 内核头文件拷贝过来用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include

建立二进制工具(binutils)
binutils是一些二进制工具的集合,其中包含了我们常用到的as和ld。
首先,我们解压我们下载的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2

然后进入build-binutils目录配置和编译binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX

--target 选项是指出我们生成的是 arm-linux 的工具,--prefix 是指出我们可执行文件安装的位置。
会出现很多 check,最后产生 Makefile 文件。
有了 Makefile 后,我们来编译并安装 binutils,命令很简单。
$make
$make install

看一下我们 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size

我们来解释一下上面生成的可执行文件都是用来干什么的
add2line - 将你要找的地址转成文件和行号,它要使用 debug 信息。
Ar-产生、修改和解开一个存档文件
As-gnu 的汇编器
C++filt-C++ 和 java 中有一种重载函数,所用的重载函数最后会被编译转化成汇编的标号,c++filt 就是实现这种反向的转化,根据标号得到函数名。
Gasp-gnu 汇编器预编译器。
Ld-gnu 的连接器
Nm-列出目标文件的符号和对应的地址
Obj-将某种格式的目标文件转化成另外格式的目标文件
Objmp-显示目标文件的信息
Ranlib-为一个存档文件产生一个索引,并将这个索引存入存档文件中
Readelf-显示 elf 格式的目标文件的信息
Size-显示目标文件各个节的大小和目标文件的大小
Strings-打印出目标文件中可以打印的字符串,有个默认的长度,为4
Strip-剥掉目标文件的所有的符号信息

建立初始编译器(bootstrap gcc)
首先进入 build-tools 目录,将下载 gcc 源代码解压
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz

然后进入 gcc-2.95.3 目录给 gcc 打上补丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in

在我们编译并安装 gcc 前,我们先要改一个文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
这一行改为
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果没定义 -Dinhibit,编译时将会报如下的错误
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2

㈤ XPC模型无法编译,高手指点。高分悬赏!

错误使用 ==> RTW.makertw.make_rtw
错误使用 ==>rtw\ private\ issue_inv_comp_env_val_error
为环境变数 MSDevDir 或 DevEnvDir 的病人设定。
设定是: 'c:\ microsoft 视觉的工作场所'
你能借由为存在检查查证设定:
%MSDevDir%\.。\ vc\bin\ vcvars32.bat(对于视觉的 C/C++5.0)
%MSDevDir%\.。\.。\ vc98\bin\ vcvars32.bat(对于视觉的 C/C++6.0)
%DevEnvDir%\.。\ tools\ vsvars32.bat(对于视觉的 C/C++7.0)

你一定定义 MSDevDir 或 DevEnvDir 当:
设定 %MSDevDir%=<VisualRoot>\ sharedide(对于视觉的 C/C++5.0)
设定 %MSDevDir%=<VisualRoot>\ common\ msdev98(对于视觉的 C/C++6.0)
设定 %DevEnvDir%=<VisualRoot>\ common7\ ide(对于视觉的 C/C++7.0)

这一个错误可能是由于一个有病的偏爱文件:
C:\ Documents 和 setting\yan\application data\ MathWork\MATLAB\R14\mexopts.bat
请跑 " mex-装备" 在 MATLAB 提示改正

2
即时的错误建筑物工作室为区段图表 '无称号的' 对准。 MATLAB 错误信息:
错误使用 ==> slbuild
错误使用 ==> RTW.makertw.make_rtw
错误使用 ==>rtw\ private\ issue_inv_comp_env_val_error
为环境变数 MSDevDir 或 DevEnvDir 的病人设定。
设定是: 'c:\ microsoft 视觉的工作场所'
你能借由为存在检查查证设定:
%MSDevDir%\.。\ vc\bin\ vcvars32.bat(对于视觉的 C/C++5.0)
%MSDevDir%\.。\.。\ vc98\bin\ vcvars32.bat(对于视觉的 C/C++6.0)
%DevEnvDir%\.。\ tools\ vsvars32.bat(对于视觉的 C/C++7.0)

你一定定义 MSDevDir 或 DevEnvDir 当:
设定 %MSDevDir%=<VisualRoot>\ sharedide(对于视觉的 C/C++5.0)
设定 %MSDevDir%=<VisualRoot>\ common\ msdev98(对于视觉的 C/C++6.0)
设定 %DevEnvDir%=<VisualRoot>\ common7\ ide(对于视觉的 C/C++7.0)

这一个错误可能是由于一个有病的偏爱文件:
C:\ Documents 和 setting\yan\application data\ MathWork\MATLAB\R14\mexopts.bat
请跑 " mex-装备" 在 MATLAB 提示改正

㈥ 如何在android Studio里设置Build Tool版本

解决方案1:
生成导入AS所需配置文件(*: 5ms
Traversed tree,
这样可以确保使用源码里的库文件

并将其作为要使用的SDK的Java SDK:
Read excludes.java文件;tools/。如下图

三,这是idegen的代码不够严谨造成的;linux-x86/.jar
如果idegen;bin/.iml两个IntelliJ
IDEA(AS是基于IntelliJ IDEA社区版开发的)的配置文件
④在AS中打开源码根目录下新生成的android;tools/一;studio。
我的分享里有修改这个bug的patch:
44078ms

这时会在源码的根目录下生成android,执行.java的文件夹:
mmm
development/idegen/.ipr)
①编译源码(为了确保生成了.sh

等待出现类似下面的结果,导致idegen;如果编译过、配置AS的JDK;idegen/,则无需再次编译)
②检查out/、SDK
在IDE中添加一个没有classpath的JDK。
二.java;host/.vmoptions中-Xms和-Xmx的值;idegen;目录下是否有idegen,或者直接使用我分享的idegen。
③执行
development/.jar运行时抛FileNotFoundException。文档中使用的是748m;

在5.0,
可自行修改.jar.1的源码中会生成res,如R,所以先修改IDEA_HOME/.jar不存在.ipr和android、修改Android
Studio(以下简称AS)的内存配置
因为在导入源码时需要消耗大量内存;framework/

㈦ 如何安装GCC编译器和开发工具

在CentOS 7和RHEL 7系统上如何安装Gnu GCC编译器和相关的工具比如:autoconf,automake,flex, c++编译器等工具。我们可以通过在centos 或者rhel 7 系统上安装下面的软件包来搭建基本的开发环境。

autoconf

automake

binutils

bison

flex

gcc

gcc-c++

gettext

libtool

make

patch

pkgconfig

redhat-rpm-config

rpm-build

rpm-sign
显示当前系统的yum group,使用下面的命令:

yum group list
命令输出:

[root@itsprite /]# yum group list
Loaded plugins: fastestmirror, langpacks
There is no installed groups file.
Maybe run: yum groups mark convert (see man yum)
Loading mirror speeds from cached hostfile

* base: mirrors.btte.net

* extras: mirrors.btte.net

* updates: mirrors.btte.net
Available environment groups:

Minimal Install

Infrastructure Server

File and Print Server

Basic Web Server

Virtualization Host

Server with GUI

GNOME Desktop

KDE Plasma Workspaces

Development and Creative Workstation
Available Groups:

Compatibility Libraries

Console Internet Tools

Development Tools

Graphical Administration Tools

Legacy UNIX Compatibility

Scientific Support

Security Tools

Smart Card Support

System Administration Tools

System Management
Done
安装GCC和开发环境
输入下面的命令:

yum group install "Development Tools"
安装完之后,使用下面的命令来验证gcc是否安装成功:

whereis gcc
命令输出:

[root@itsprite /]# whereis gcc
gcc:/usr/bin/gcc /usr/lib/gcc /usr/libexec/gcc /usr/share/man/man1/gcc.1.gz
输入下面的命令来查看gcc工具的版本:

[root@itsprite /]# gcc --version
gcc (GCC) 4.8.2 20140120(Red Hat 4.8.2-16)
Copyright (C)2013 Free Software Foundation, Inc.
This is free software; see the source for ing conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
测试GCC编译器
下面我们使用刚安装好的GCC编译器来编译一个c语言程序.
创建下面的test.c程序:

#include
int main(void){

printf("Hello World!\n");

return0;
}
输入命令编译test.c 文件:

gcc test.c -o test
执行编译后的文件:


./test
Hello World!

㈧ 如何安装arm-liunx交叉编译环境

sh ./arm-elf-tools-20040427.sh安装
----------------------------------------------
一、准备工作

首先需要一台运行Linux操作系统的PC以完成我们的编译工作。

其次要准备如下一些源文件。

1、源文件准备

binutils-2.14.tar.gz

ftp://ftp.gnu.org/gnu/binutils/binutils-2.14.tar.gz

gcc-core-2.95.3.tar.gz

ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.3/gcc-core-2.95.3.tar.gz

gcc-g++2.95.3.tar.gz

ftp://ftp.gnu.org/gnu/gcc/gcc-2.95.3/gcc-g++-2.95.3.tar.gz

glibc-2.2.4.tar.gz

ftp://ftp.gnu.org/gnu/glibc/glibc-2.2.4.tar.gz

glibc-linuxthreads-2.2.4.tar.gz

ftp://ftp.gnu.org/gnu/glibc/glibc-linuxthreads-2.2.4.tar.gz

linux-2.4.21.tar.gz

ftp://ftp.kernle.org/pub/linux/kernel/v2.4/linux-2.4.21.tar.gz

patch-2.4.21-rmk1.gz # linux kernel patch for arm

ftp://ftp.arm.linux.org.uk/pub/linux/arm/kernel/v2.4/patch-2.4.21-rmk1.gz

binutils-2.14.tar.gz这个压缩包包含有ld,ar,as等一些产生或者处理二进制文件的工具。

gcc-core-2.95.3.tar.gz这个压缩包是GCC的主体部分,GCC是GNU Compiler Collection的简称,顾名思义,它能够编译很多种高级语言,例如C、C++,Java等,而这个压缩包中含有C编译器,及公共部分,而对其他语言的支持,采用另外的压缩包单独发布。

gcc-g++2.95.3.tar.gz,这个压缩包就是为使GCC能够编译C++程序而单独发布的。

glibc-2.2.4.tar.gz,libc是很多用户层应用都要用到的库,kernel和bootloader不需要这个库的支持,这个库主体部分封装在这个压缩包内。

glibc-linuxthreads-2.2.4.tar.gz,这是Libc用于支持Posix线程而单独发布的一个压缩包。

linux-2.4.21.tar.gz,这个压缩包就是Linux的内核。

patch-2.4.21-rmk1.gz,这个压缩包是用来给Linux内核打补丁,以使其可以支持ARM的硬件平台。

2、工作目录搭建

我们创建如下的目录树结构

mkdir arm

mkdir tool-chain

mkdir build-dir

mkdir src-dir

mkdir setup-dir

mkdir kernel

arm这个目录是我们的最顶层工作目录,我们所有的编译工作都在这里完成。

tool-chain这个目录是我们交叉编译工具的安装位置,它下面的bin子目录存放我们创建好的编译器,汇编器,连接器,以及编译好的C库也会安装到这个目录之下。

setup-dir这个目录用来存放我们下载的压缩包。

src-dir这个目录用于存放binutils,gcc,glibc解压之后的源文件。

kernel这个目录用来存放内核文件,对内核的配置、编译工作将在这个目录中完成。

build-dir用来编译src-dir中的源文件,具体就是binutils,gcc,glibc的编译工作将在这个目录下完成。这种源文件目录和编译目录分离的编译方式是GNU所推荐的。

cd ./src-dir

tar –xvzf ../setup-dir/ binutils-2.14.tar.gz

tar –xvzf ../setup-dir/ gcc-core-2.95.3.tar.gz

tar –xvzf ../setup-dir/ glibc-2.2.4.tar.gz

tar –xvzf ../setup-dir/ glibc-linuxthreads-2.2.4.tar.gz –directory=./glibc-2.2.4

这样我们在src-dir目录下就形成了3个源文件目录binutils-2.14,gcc-core-2.95,3,glibc-2.2.4,其中分别存放着binutils tools,gcc,glibc的源代码。接下来我们到build-dir中创建3个与这三个源文件目录对应的编译目录。

cd ../build-dir

mkdir ../build-dir/build-binutils

mkdir ../build-dir/build-gcc

mkdir ../build-dir/build-glibc

我们将在这三个目录中完成对binutils tools, gcc, glibc的配置和编译工作。下面还要把内核文件解压到kernel目录下,并打补丁。

cd ../kernel

tar –xvzf ../setup-dir/ linux-2.4.21.tar.gz

cd ./linux-2.4.21

patch –p1 < ../../setup-dir/ patch-2.4.21-rmk1

二、开始创建

1、 确定几个系统变量

cd ../../

export TARGET=arm-linux

export PREFIX=../arm/tool-chain

export TARGET_PREFIX=$PREFIX/$TARGET

export KERNEL_SOURCE_LOCATION=../arm/kernel/linux-2.4.21

export PATH=$PREFIX/bin:$PATH

几个系统变量经常要用到,TARGET定义了目标机,PREFIX是工具链的安装目录,KERNEL_SOURCE_LOCATION是内核文件位置。

TARGET这个变量对于ARM体系的目标机来说取值为arm-linux,对于其他体系结构的机器如ppc,mips的取值的详细清单可以参见glibc目录下的INSTALL文档.

2、 创建binutils

运行如下命令来创建binutils

cd ./build-dir/build-binutils

configure ../../src-dir/binutils-2.14/configure –target=$TARGET –prefix=$PREFIX

make

make install

这时$PREFIX/bin下创建了一些文件,包括arm-linux-ld,arm-linux-as等。

3、 编译内核

cd ../../kernel/linux-2.4.21

改Makefile文件使

ARCH = arm

CROSS_COMPILE=arm-linux-

make menuconfig

在System Types中选择正确的硬件类型

make dep

之后执行如下操作

mkdir $TARGET_PREFIX/include

cp dR $KERNEL_SOURCE_LOCATION/include/arm-asm \

RGET_PREFIX/include/asm

cp dR $KERNEL_SOURCE_LOCATION/include/linux \

RGET_PREFIX/include/linux

4、 创建boot-trap gcc,这个GCC没有glibc库的支持,所以只能用于编译内核,bootloader等,后面创建C库也要用到这个编译器,所以创建它主要是为创建C库做准备,如果只想编译内核和bootloader那么,就可以到此结束。

cd ../../build-dir/build-gcc

../../src-dir/gcc-2.95.3/configure –target=$TARGET –prefix=$PREFIX \

--with-headers=$ERNEL_SOURCE_LOCATION/include –enable-language=c \

--disable-threads

然后修改src-dir/gcc-2.95.3/gcc/config/arm/t-linux文件,在

TARGET_LIBGCC2_CFLAGS中添加如下两个定义

-Dinhibit-libc –D__gthr_posix_h

make

make install

这时$PREFIX/bin下创建了一些文件,主要创建了arm-linux-gcc。

5、 创建gblic

cd ../build-glibc

export CC=arm-linux-gcc

../../src-dir/glibc-2.2.4/configure –host=$TARGET –prefix=$TARGET_PREFIX \

--enable-add-ons

make

make install

将glibc库安装完之后,我们要到$TARGET_PREFIX/lib这个目录下修改libc.so文件,将其中

GROUP(/lib/libc.so.6 /lib/libc_noshared.a)

这个命令脚本中的/lib 的绝对路径去掉, 也就是改为如下的形式

GROUP(libc.so.6 libc_noshared.a)

这样下一步创建完整的编译器时,才不至于导致错误.

6、 创建功能健全的GCC,并创建G++

在成功创建了libc之后,我们就可以创建功能丰富的GCC编译器了,并且可以创建支持编译C++程序的G++。

cd ../../src-dir

tar –xvzf ../setup-dir/ gcc-g++2.95.3.tar.gz

cd ../build-dir/build-gcc

export CC=gcc

../../src-dir/gcc-2.95.3/configure –target=$TARGET –prefix=$PREFIX \

–enable-language=c,c++

然后修改src-dir/gcc-2.95.3/gcc/config/arm/t-linux文件,在

TARGET_LIBGCC2_CFLAGS中去除如下两个定义

-Dinhibit-libc –D__gthr_posix_h

make

make install

7,至此我们成功的创建了ARM Linux的交叉编译工具。

------------------------------------------------------
可以去www.arm16.com看看

㈨ cygwin下安装pycrypto时,出现GCC编译错误,求教

交叉编译工具链作为嵌入式Linux开发的基础,直接影响到嵌入式开发的项目进度和完成质量。由于目前大多数开发人员使用Windows作为嵌入式开发的宿主机,在Windows中通过安装VMware等虚拟机软件来进行嵌入式Linux开发,这样对宿主机的性能要求极高。Cygwin直接作为Windows下的软件完全能满足嵌入式Linux的开发工作,对硬件的要求低及方便快捷的特点成为嵌入式开发的最佳选择。目前网络上Cygwin下直接可用的交叉编译器寥寥无几且版本都比较低,不能满足开源软件对编译器版本依赖性的要求(如低版本工具链编译U-Boot出现软浮点问题等);Crosstool等交叉工具链制作工具也是更新跟不上自由软件版本的进度;同时系统介绍Cygwin下制作交叉编译器方面的资料很少。针对上述情况,基于最新版gcc等自由软件构建Cygwin下的交叉编译器显得尤为迫切和重要。构建前准备工作首先Cygwin下必须保证基本工具比如make}gcc等来构建bootstrap-gcc编译器,这可以在安装Cygwin时选择安装。参照gcc等安装说明文档来在Cygwin下查看是否已经安装,如输入gcc--v等。源码下载gcc-4.5.0的编译需mpc的支持,而mpc又依赖gmp和mpfr库。从各个项目官方网站上下载的最新的源码:binutils-2.20.l.tar.bz2gmp-S.O.l.tar.bz2mpc-0.8.2.tar.gzmpfr-3.O.O.tar.bz2gcc-4.S.O.tar.bz2linux-2.6.34.tar.bz2glibc-2.11.2.tar.bz2glibc-ports-2.ll.tar.bz2gdb-7.l.tar.bz2设置环境变量HOST:工具链要运行的目标机器;BUILD:用来建立工具链的机器;TARGET工具链编译产生的二进制代码可以运行的机器。BUILD=i686-pc-cygwinHOST=i686-pc-cygwinTARGET=arm-linuxSYSROOT指定根目录,$PREFIX指定安装目录。目标系统的头文件、库文件、运行时对象都将被限定在其中,这在交叉编译中有时很重要,可以防止使用宿主机的头文件和库文件。本文首选$SYSROOT为安装目录,$PREFIX主要作为glibc库安装目录。SYSROOT=/cross-rootPREFIX=/cross-root/arm-linux由于GCC-4.5.0需要mpfr,gmp,mpc的支持,而这三个库又不需要交叉编译,仅仅是在编译交叉编译链时使用,所以放在一个临时的目录。TEMP_PREFIX=/build-temp控制某些程序的本地化的环境变量:LCALL=POSIX设置环境变量:PATH=$SYSROOT/bin:儿in:/usr/bin设置编译时的线程数f31减少编译时间:PROCS=2定义各个软件版本:BINUTILSV=2.20.1GCCV=4.5.0GMPV=5.0.1MPFRV=3.0.0MPCV二0.8.2LINUXV二2.6.34GLIBCV=2.11.2GLIBC-PORTSV=2.11GDBV=7.1构建过程详解鉴于手工编译费时费力,统一把构建过程写到Makefile脚本文件中,把其同源码包放在同一目录下,执行make或顺次执行每个命令即可进行无人值守的编译安装交叉工具链。以下主要以Makefile执行过程为主线进行讲解。执行“make”命令实现全速运行可在Cygwin的Shell环境下执行“make>make.log2>&1”命令把编译过程及出现的错误都输出到make.log中,便于查找:all:prerequestinstall-depsinstall-cross-stage-oneinstall-cross-stage-two预处理操作"makeprerequest',命令实现单步执行的第一步,实现输出变量、建立目录及解压源码包等操作。0'set十h”关闭bash的Hash功能,使要运行程序的时候,shell将总是搜索PATH里的目录[4]。这样新工具一旦编译好,shell就可以在$(SYSROOT)/bin目录里找到:prerequest:set+h&&mkdir-p$(SYSROOT)/bin&&mkdir-p$(PREFIX)/include&&mkdir-p$(TEMP一REFIX)&&exportPATHLCesALL&&tar-xvfgmp-$(GMP_V).tar.bz2&&tar-xvfmpfr-$(MPFR_V).tar.bz2&&tar-xvfmpc-$(MPC_V).tar.gz&&tar-xvfbinutils-$(BINUTILS_V).tar.bz2&&tar-xvfgcc-$(GCC_V).tar.bz2&&tar-xvflinux-$(LINUX_V).tar.bz2&&tar-xvfglibc-$(GLIBC_V).tar.bz2&&tar-xvfglibc-ports-$(GLIBC-PORTS_V).tar.bz2&&myglibc-ports-$(GLIBC-PORTS_V)glibc-$(GLIBC_V)/ports&&tar-xvfgdb-$(GDBV).tar.bz2非交叉编译安装gcc支持包mpc00makeinstall-deps”命令实现单步执行的第二步,实现mpc本地编译,mpc依赖于gmp和mpfrinstall-deps:gmpmpfrmpcgmp:gmp-$(GMP_V)mkdir-pbuild/gmp&&cdbuild/gmp&&../../gmp-*/configure--disable-shared--prefix=$(TEMP_PREFIX)&&$(MAKE)一$(PROCS)&&$(MAKE)installmpfr:mpfr-$(MPFR_V)mkdir-pb-uild/mpfr&&cdbuild/mpfr&&../..//mpfr-*/configureLDF'LAGS="-Wl,-search_paths_first”--disable-shared--with-gmp=$(TEMP_PREFIX)--prefix=$(TEMP_PREFIX)&&$(MAKE)一$(PROCS)all&&$(MAKE)installmpc:mpc-$(MPC_V)gmpmpfrmkdir-pbuild/mpc&&cdbuild/mpc&&../../mpc-*/configure--with-mpfr=$(TEMPPREFIX)--with-gmp=$(TEMP_PREFIX)--prefix=$(TEMP_PREFIX)&&$(MAKE)一$(PROCS)&&$(MAKE)install交叉编译第一阶段"makeinstall-cross-stage-one',命令实现单步执行的第三步,编译安装binutils,bootstrap-gcc和获取Linux内核头文件:install-cross-stage-one:cross-binutilscross-gccget-kernel-headers编译安装binutilscross-binutils:binutils-$(BINUTILS_V)mkdir-pbuild/binutils&&cdbuild/binutils&&../..//binutils-*/configure--prefix=$(SYSROOT)--target=$(TARGET)--disable-nls&&$(MAKE)j$(PROCS)&&$(MAKE)install编译安装bootstrap-gcc。使用一disable-shared参数的意思是不编译和安装libgcc_eh.a文件。glibc软件包依赖这个库,因为它使用其内部的一lgcc_eh来创建系统[6]。这种依赖性,可通过建立一个指向libgcc.a符号链接得到满足,因为该文件最终将含有通常在libgcc-eh.a中的对象(也可通过补丁文件实现)。cross-gcc:gcc-$(GCC_V)mkdir-pbuild/gcc&&cdbuild/gcc&&二//gcc-*/configure--target=$(TARGET)--prefix=$(SYSROOT)--disable-nls--disable-shared--disable-multilib--disable-decimal-float--disable-threads--disable-libmudflap--disable-libssp--disable-libgomp--enable-languages=c--with-gmp=$(TEMP_PREFIX)--with-mpfr=$(TEMP_PREFIX)--with-mpc=$(TEMP_PREFIX)&&$(MAKE)-j$(PROCS)&&$(MAICE)install&&In-vslibgcc.a'arm-linux-gcc-print-libgcc-file-nameIsed's/libgcc/&eh/'}获取Linux内核头文件:get-kernel-headersainux-$(LINUX_V)cdlinux-$(LINUX_V)&&$(MAICE)mrproper&&$(MAKE)headerscheck&&$(MAKE)ARCH=arm&&INSTALLesHDR_PATH=destheaders_install&&finddest/include(-name.install一。-name..installNaNd)-delete&&cp-rvdesdinclude/*$(PREFIX)/include交叉编译第二阶段编译安装glibc、重新编译安装binutils、完整编译安装gcc和编译安装gdbo"makeinstall-cross-stage-two',命令实现单步执行的第四步:install-cross-stage-two:cross-glibccross-rebinutilscross-g++cross-gdb编译安装glibcaglib。的安装路径特意选为$(PREFIX),与gcc更好找到动态链接库也有关系,选在$(SYSROOT)提示找不到crti.o;glibc已经不再支持i386;glibc对ARM等的处理器的支持主要通过glibc-ports包来实现;正确认识大小写敏感(CaseSensitive)和大小写不敏感(CaseInsensitive)系统,大小写敏感问题主要影响到glibc,是交叉编译glibc成功的关键:Cygwin帮助手册中可知Cygwin是默认大小写不敏感的n},但是UNIX系统是大小写敏感的,这也是Cygwin和UNIX类系统的一个区别。通过作者自行参考制作的glibc-2.11.2-cygwin.patch补T使glibc变为Case-Insensitive,此补丁主要是对大小写敏感问题改名来实现。交叉编译过程中安装的链接器,在安装完Glibc以前都无法使用。也就是说这个配置的forcenwind支持测试会失败,因为它依赖运行中的链接器。设置libc_cvforcenwind=yes这个选项是为了通知configure支持force-unwind,而不需要进行测试。libccv_c_cleanup=yes类似的,在configure脚本中使用libc_cv_ccleanup=yes,以便配置成跳过测试而支持C语言清理处理。cross-glibc:glibc-$(GLIBC_V)cdglibc-$(GLIBC_V)&&patch-Np1–i//glibc-2.11.2-cygwin.patch&&cd..&&mkdir-pbuild/glibc&&cdbuild/glibc&&echo"libccv_forcedesunwind=yes">config.cache&&echo"libccv_c_cleanup=yes">>config.cache&&echo"libccv_arm_tls=yes">>config.cache&&../../glibc-*/configure--host=$(TARGET)--build=$(../OneScheme/glibc-2.11.2/scripts/config.guess)--prefix=$(PREFIX)--disable-profile--enable-add-ons--enable-kernel=2.6.22.5--with-headers=$(PREFIX)/include--cache-file=config.cache&&$(MAKE)&&$(MAKE)install重新编译安装binutils。编译之前要调整工具链,使其指向新生成的动态连接器。调整工具链:SPECS='dirname$(arm-linux-gcc-print-libgcc-file-name)'/specsarm-linux-gcc-mpspecssed-e's@/lib(64)\?/ld@$(PREFTX)&@g'-e,}/}}*cPP}$/{n;s,$,-isystem$(PREFIX)/include,}">$SPECSecho"Newspecsfileis:$SPECS"unsetSPECS测试调整后工具链:echo'main(川’>mmy.carm-linux-gcc-B/cross-root/arm-linux/libmmy.creadelf-1a.outIgrep’:/cross-roobarm-linux'调整正确的输出结果:[Requestingprograminterpreter:/tools/lib/ld-linux.so.2j一切正确后删除测试程序:rm-vmmy.ca.out重新编译binutils。指定--host,--build及--target,否则配置不成功,其config.guess识别能力不如gcc做的好。cross-rebinutils:binutils-$(BINUTILS_V)mkdir-pbuild/rebinutils&&cdbuild/rebinutils&&CC="$(TARGET)-gcc-B/cross-roodarm-linux/lib/"&&AR=$(TARGET)-ar&&RANLIB=$(TARGET)-ranlib&&../..//binutils-*/configure--host=$(HOST)--build=$(BUILD)--target=$(TARGET)--prefix=$(SYSROOT)--disable-nls--with-lib-path=$(PREFIX)/lib&&$(MAKE)--$(PROCS)&&$(MAKE)install高于4.3版的gcc把这个编译当作一个重置的编译器,并且禁止在被一prefix指定的位置搜索startfiles。因为这次不是重置的编译器,并且$(SYSROOT)目录中的startfiles对于创建一个链接到$$(SYSROOT)目录库的工作编译器很重要,所以我们使用下面的补丁,它可以部分还原gcc的老功能tai.patch-Npl–i../gcc-4.5.0-startfiles_fix-l.patch在正常条件下,运行gcc的fixincludes脚本,是为了修复可能损坏的头文件。它会把宿主系统中已修复的头文件安装到gcc专属头文件目录里,通过执行下面的命令,可以抑制fixincludes脚本的运行[9](此时目录为/gcc-4.5.0)。cp-vgcc/Makefile.in{,.orig}sed's@\./fixinc\.sh@-ctrue@'gcc/Makefile.in.orig>gcc/Makefile.in下面更改gcc的默认动态链接器的位置,使用已安装在/cross-root/ann-linux目录下的链接器,这样确保在gcc真实的编译过程中使用新的动态链接器。即在编译过程中创建的所有二进制文件,都会链接到新的glibc文件forfilein$(findgcc/config-namelinux64.h-o-namelinux.h–o-namesysv4.h)docp-uv$file{,.orig}sed-a's@/lib(64)?(32)?/Id@/cross-root/arm-linux&@g’-e's@/usr@/cross-rootlarm-linux@g'$file.orig>$fileecho‘#undefSTANDARDINCLUDEDIR#defineSTANDARD_INCLUDEDIR"/cross-root/arm-linux/include"#"/cross-root/arm-linux/lib"#defineSTANDARD_STARTFILE_PREFIX_2””’>>$filetouch$file.origdone完整编译安装gcc。最好通过指定--libexecdir更改libexecdir到atm-linux目录下。--with-local-prefix选项指定gcc本地包含文件的安装路径此处设为$$(PREFIX),安装后就会在内核头文件的路径下。路径前指定$(Pwd)则以当前路径为基点,不指定则默认以/home路径为基点,这点要注意。cross-g++:gcc-$(GCC-)mkdir-pbuild/g十+&&cdbuild/g++&&CC="$(TARGET)-gccAR=$(TARGET)-ar&&-B/cross-roodarm-linux/lib/"&&RANLIB=$(TARGET)-ranlib&&..//gcc-*/configure--host=$(HOST)--build=$(BUILD)--target=$(TARGET)--prefix=$(SYSROOT)--with-local-prefix=$(PREFIX)--enable-clocale=gnu--enable-shared--enable-threads=posix--enable-cxa_atexit--enable-languages=c,c++--enable-c99--enable-long-long--disable-libstdcxx-pch--disable-libunwind-exceptions--with-gmp=$(TEMP_PREFIX)--with-mpfr=$(TEMP_PREFIX)--with-mpc=$(TEMP_PREFIX)&&$(MAKE)LD_IBRARY_ATH=$(pwd)/$(../../gcc-4.5.0/config.guess)/libgcc&&$(MAKE)install编译安装gdb,至此完成整个工具链的制作。cross-gdb:gdb-$(GDBV)mkdir-pbuild/gdb&&cdbuild/gdb&&../../gdb-*/configure--prefix=$(SYSROOT)--target=$(TARGET)--disable-werror&&$(MAKE)-j$(PROCS)&&$(MAKE)install“makeclean”命令清除编译生成的文件和创建解压的文件夹.PHONY:cleandean:rm-fr$(TEMP_PREFIX)buildbinutils-$(BINUTIL,S_V)gcc-$(GCC_V)glibc-$(NEWL.IB_V)gdb-$(GDB_V)gmp-$(GMP_V)mpc-$(MPC_V)mpfr-$(MPFR_V)工具链测试命令行中输入以下内容:echo'main(){}’>mmy.carm-linux-gcc-ommy.exemmy.cfilemmy.exe运行正常的结果:mmy.exe:ELF32-bitLSBexecutable,ARM,version1,forGNU/Linux2.6.22,dynamicallylinked(usessharedlibs),notstripped.

㈩ 如何把patch加到buildroot中

1.确定buildroot中的mplayer的patch的命名规则,这个可以在

先去删除buildroot中的mplayer:

rm build_arm/MPlayer-1.0rc1/ -r

然后直接make,编译输出过程中就有对应信息:

[root@linux-41lh buildroot]$>make

Checking build system dependencies:
BUILDROOT_DL_DIR clean: Ok
CC clean: Ok
。。。。。。。。

rm -rf /root/buildroot/buildroot/project_build_arm/uclibc/buildroot-config
mkdir -p /root/buildroot/buildroot/project_build_arm/uclibc
cp -dpRf package/config/buildroot-config /root/buildroot/buildroot/project_build_arm/uclibc/buildroot-config
bzcat /root/buildroot/buildroot/dl/MPlayer-1.0rc1.tar.bz2 | tar -C /root/buildroot/buildroot/build_arm -xf –
toolchain/patch-kernel.sh /root/buildroot/buildroot/build_arm/MPlayer-1.0rc1 package/mplayer/ mplayer-1.0rc1*.patch*

Applying mplayer-1.0rc1-atmel.3.patch using plaintext:
patching file cfg-common.h
patching file cfg-mencoder.h
patching file cfg-mplayer.h
patching file configure
patching file libaf/af_format.c
patching file libavcodec/Makefile
patching file libavcodec/avr32/dsputil_avr32.c
patching file libavcodec/avr32/fdct.S
patching file libavcodec/avr32/h264idct.S
patching file libavcodec/avr32/idct.S
patching file libavcodec/avr32/mc.S
patching file libavcodec/avr32/pico.h
patching file libavcodec/bitstream.h
patching file libavcodec/dsputil.c
patching file libavcodec/h264.c
patching file libavutil/common.h
patching file libavutil/internal.h
patching file libfaad2/common.h
patching file libmpcodecs/ad_libmad.c
patching file libswscale/pico-avr32.h
patching file libswscale/swscale_internal.h
patching file libswscale/yuv2rgb.c
patching file libswscale/yuv2rgb_avr32.c
patching file libvo/vo_fbdev2.c
patching file version.sh

Applying mplayer-1.0rc1-index.patch using plaintext:
patching file stream/stream_dvb.c
touch /root/buildroot/buildroot/build_arm/MPlayer-1.0rc1/.unpacked
(cd /root/buildroot/buildroot/build_arm/MPlayer-1.0rc1; rm -rf config.cache;

说明patch名字符合 mplayer-1.0rc1*.patch* 即可。

所以,把自己patch改名符合条件的:mplayer-1.0rc1_vbr_fixedMad.patch

2.把patch拷贝到对应文件夹下:

拷贝mplayer-1.0rc1_vbr_fixedMad.patch到 package/mplayer/ 下面。

这样,make的时候,就会自动找到该patch,并执行它:

。。。。。。。。

rm -rf /root/buildroot/buildroot/project_build_arm/uclibc/buildroot-config
mkdir -p /root/buildroot/buildroot/project_build_arm/uclibc
cp -dpRf package/config/buildroot-config /root/buildroot/buildroot/project_build_arm/uclibc/buildroot-config
bzcat /root/buildroot/buildroot/dl/MPlayer-1.0rc1.tar.bz2 | tar -C /root/buildroot/buildroot/build_arm -xf –
toolchain/patch-kernel.sh /root/buildroot/buildroot/build_arm/MPlayer-1.0rc1 package/mplayer/ mplayer-1.0rc1*.patch*

。。。。

Applying mplayer-1.0rc1-index.patch using plaintext:
patching file stream/stream_dvb.c

Applying mplayer-1.0rc1_vbr_fixedMad.patch using plaintext:
patching file libmpcodecs/ad_hwmpa.c
patching file libmpcodecs/ad_libmad.c
patching file libmpcodecs/ad_mp3lib.c
patching file libmpdemux/demux_audio.c
patching file libmpdemux/mp3_hdr.c
patching file libmpdemux/mp3_hdr.h
patching file libmpdemux/muxer_mpeg.c
touch /root/buildroot/buildroot/build_arm/MPlayer-1.0rc1/.unpacked
(cd /root/buildroot/buildroot/build_arm/MPlayer-1.0rc1; rm -rf config.cache;
PATH="/root/buildroot/buildroot/toolchain_build_arm/bin:/root/buildroot/buildroot/build_arm/staging_dir/bin:/root/buildroot/buildroot/build_arm/staging_dir/usr/bin:/usr/lib/mpi/gcc/openmpi/bin:/usr/local/bin:/usr/bin:/sbin:/usr/sbin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/kde3/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin:/root/buildroot/buildroot/build_arm/staging_dir/include:/root/buildroot/buildroot/build_arm/staging_dir/usr/include:/root/buildroot/buildroot/build_arm/staging_dir/usr/bin" AR="/root/buildroot/buildroot/build_arm/staging_dir/usr/bin/arm-linux-uclibc-ar" 。。。。。。。。

另外要说明一点是,为了确保你的patch正常工作了,你要保证出来的patch,是用-p1去使用的。

因为,buildroot中就是去根据

package/mplayer/mplayer.mk

中的要求,调用toolchain/patch-kernel.sh去应用patch的,而toolchain/patch-kernel.sh里面,是用-p1的:

阅读全文

与patchbuild编译相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:569
python员工信息登记表 浏览:369
高中美术pdf 浏览:153
java实现排列 浏览:505
javavector的用法 浏览:974
osi实现加密的三层 浏览:225
大众宝来原厂中控如何安装app 浏览:906
linux内核根文件系统 浏览:235
3d的命令面板不见了 浏览:520
武汉理工大学服务器ip地址 浏览:141
亚马逊云服务器登录 浏览:517
安卓手机如何进行文件处理 浏览:65
mysql执行系统命令 浏览:923
php支持curlhttps 浏览:136
新预算法责任 浏览:437
服务器如何处理5万人同时在线 浏览:244
哈夫曼编码数据压缩 浏览:419
锁定服务器是什么意思 浏览:378
场景检测算法 浏览:612
解压手机软件触屏 浏览:343