Ⅰ 早期文明的运算系统中,单位分数出现在哪个国家和地区
根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带.需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄.别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的.而它们的发明,也同样经历了一个漫长的历史发展过程.
在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示.表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.这种计数法遵循十进位制.
算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具.
算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的.它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了.前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢?
那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了.所谓十进位制,又称十进位值制,包含有两方面的含义.其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置.如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了.
按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了.由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位.毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的.
中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造.把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的.古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难.古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位.20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便.中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法.马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的.
二进制思想的开创国
着名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想.当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系.
元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识.阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现.从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的.
《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机.
十进制的使用
《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万.甲骨卜辞中还有奇数、偶数和倍数的概念.
十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百.这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用.
我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个.因此十进制的使用似乎应该是极其自然的事.但实际情况并不尽然.在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的.古代埃及倒是很早就用10进位制,但他们却不知道位值制.所谓位值制就是一个数码表示什么数,要看它所在的位置而定.位值制是千百年来人类智慧的结晶.零是位值制记数法的精要所在.但它的出现却并非易事.我国是最早使用十进制记数法,且认识到进位制的国家.我们的口语或文字表达的数字也遵守这一原则,比如一百二十七.同时我们对0的认识最早.
十进制是中国人民的一项杰出创造,在世界数学史上有重要意义.着名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学."
分数和小数的最早运用
分数的应用
最初分数的出现,并非由除法而来.分数被看作一个整体的一部分."分"在汉语中有"分开""分割"之意.后来运算过程中也出现了分数,它表示两整数比.分数的加减乘除运算我们小学就已完全掌握了.很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了.那时精通自然数的四则运算就已达到了学者水平.至于分数,对当时人来说简直难于上青天.德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了".为什么会如此呢?这都是笨拙的记数法导致的.在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年.
西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》.在这本数学经典的《方田》章中,提出了完整的分数运算法则.
从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同.另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的着作.
分数运算,大约在15世纪才在欧洲流行.欧洲人普遍认为,这种算法起源于印度.实际上,印度在七世纪婆罗门笈多的着作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同.而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右.
小数的最早使用
刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念.到公元 1300年前后,元代刘瑾所着《律吕成书》中,已将106368.6312写成
把小数部分降低一行写在整数部分的后边.而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368.
九九表的使用
作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一.而古代是从"九九八十一"开始,因此称"九九表".九九表的使用,对于完成乘法是大有帮助的.齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕.也许有人认为这种成绩不值一提.但在古代埃及作乘法却要用倍乘的方式呢.举个例子.如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13.从比较中不难看出使用九九表的优越性了.
根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致.这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重.此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物.
除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘.
乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表.但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用.
负数的使用
人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数.
负数的引进,是中国古代数学家对数学的一个巨大贡献.在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负.在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之".当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负.这样,遇到具有相反意义的量,就能用正负数明确地区别了.
在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之."这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则.它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述.
在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度.如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去.有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的".直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认.
从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富.负数概念引进后,整数集和有理数集就完整地形成了.
圆周率的计算
圆周率是数学中最重要的常数之一.对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一.而我国古代数学在这方面取得了令世人瞩目的成绩.
我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确.在求准确圆周率值的征途中,首先迈出关键一步的是刘徽.他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值.用这种方法他求得圆周率的近似值为3.14,也有人认为他得到了更好的结果:3.1416.青出于蓝,而胜于蓝.后继者祖冲之利用割圆术得出了正确的小数点后七位.而且他还给出了约率与密率.密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作.
Ⅱ 世界数学发展史
我们伟大的祖国,作为世界四大文明古国之一,在数学发展的历史长河中,曾经作出许多杰出的贡献。这些光辉的成就,远远走在世界的前列,在世界数学史上享有崇高的荣誉。 一、位置值制的最早使用 所谓位置值制,是指同一个数字由于它所在位置的不同而有不同的值。例如,365中,数字3表示三百,6表示六十。
用这种方法表示数,不但简明,而且便于计算。采用十进位置值制记数法,以我国为最早。在考古发掘的殷墟甲骨文中,就曾发现13个记数单字,它们是:
用9个数字与4个位置值的符号,可以表示出大到上万的自然数,已经有了位置值制的萌芽。到了春秋战国时期,我们的祖先已普遍使用算筹来进行计算。在筹算中,完全是采用十进位置值制来记数的,既比古巴比伦的六十进位置值制方便,也比古希腊、罗马的十进非位置值先进。这种先进的记数制度,是人类文明的重要里程碑之一,是世界数学史上无与伦比的光辉成就。
二、分数的最早使用 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、约分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的着作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的着作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 三、小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。宋元时期,秦九韶、李冶都将1863.2寸表示为,与现在的记法基本相同。到公元 1300年前后,元代刘瑾所着《律吕成书》中,已将106368.6312写成
把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。所以,我们完全可以自豪地宣称:中国是世界上最先使用小数的国家。 四、负数的最早使用 在《九章算术》中,已经引入了负数的概念和正负数加减法则。刘徽说:“两算得失相反,要令正负以名之”,这是关于正负数的明确定义,书中给出的正负数加减法则,和现在教科书中介绍的法则完全一样。 这些内容出现在书上的《方程章》中,是为解方程(组)服务的,如该章的第八题是: 今有卖牛二、羊五,以买十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖羊六、豕八,以买五牛,钱不足六百。问牛、羊、豕价各几何? 其解法为: 术曰:如方程,置牛二、羊五正,豕十三负,余钱数正:次置牛三正,羊九负,豕三正;次置牛五负,羊六正,豕八正,不足钱负。以正负术人之。 这里所说的意思就是:若每头牛、羊、豕的价格分别用x、y、z表示,则可列出如下的方程(组):
然后利用正负数去计算结果。在方程的各项系数及常数项中都出现了负数,在世界上率先把负数运用于计算之中。 在国外,有很长时期认为负数是一种“荒谬的数”,被摒弃于数的大家庭之外。直到公元7世纪,印度的婆罗门笈多才开始认识负数,欧洲第一个给予正负数以正确解释的是斐波那契,但他们已分别比我们的祖先晚七百多年和一千年左右。
五、二项式系数的规律的最早发现 在学习了多项式乘法以后,不难知道:
等等。那么,上述等式右端各项的系数有什么规律呢?
1261年,我国宋代数学有杨辉曾在他所着的《详解九章算法》中给出一个“开方作法本源”图(见下图),把指数分别
为0—6的二项式系数—一列出,并且指明,“开方作法本源出《释锁算书》,贾宪用此术。”贾宪是北宋时期的数学家,生平不详,大约生活在11世纪上半叶,这就是说,我国早在11世纪就已经认识了二项式各项系数的规律。现在,我们把这个规律简称为“贾宪三角形”。 在国外,直到15世纪,阿拉伯的数学家阿尔·卡西才用直角三角形表示了同样意义的三角形。 1527年,德国人阿皮亚纳斯在其所着的一本算术书的封面上也曾印有这个二项式系数表。16、17世纪,欧洲还有许多数学家也都提出过类似贾宪的三角形,其中以帕斯卡最为有名,欧洲人把这种二项式系数表称为“帕斯卡三角形”,但那已经是1654年的事了,时间要比贾宪晚600多年,就是与杨辉相比,也要落后近400年。 当然,在世界数学发展史上,中国数学的“世界之最”远远不止上面介绍的五个方面。但由此可以看到,我们的祖国是一个历史悠久的文明古国,我们中华民族是一个对世界文明的发展作出过许多贡献的伟大民族,我们的祖先在数学方面所取得的辉煌业绩,必将彪炳千古,为世界各国人民所赞颂。
我们伟大的祖国,作为世界四大文明古国之一,在数学发展的历史长河中,曾经作出许多杰出的贡献。这些光辉的成就,远远走在世界的前列,在世界数学史上享有崇高的荣誉。 一、位置值制的最早使用 所谓位置值制,是指同一个数字由于它所在位置的不同而有不同的值。例如,365中,数字3表示三百,6表示六十。
用这种方法表示数,不但简明,而且便于计算。采用十进位置值制记数法,以我国为最早。在考古发掘的殷墟甲骨文中,就曾发现13个记数单字,它们是:
用9个数字与4个位置值的符号,可以表示出大到上万的自然数,已经有了位置值制的萌芽。到了春秋战国时期,我们的祖先已普遍使用算筹来进行计算。在筹算中,完全是采用十进位置值制来记数的,既比古巴比伦的六十进位置值制方便,也比古希腊、罗马的十进非位置值先进。这种先进的记数制度,是人类文明的重要里程碑之一,是世界数学史上无与伦比的光辉成就。
二、分数的最早使用 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、约分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的着作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的着作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 三、小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。宋元时期,秦九韶、李冶都将1863.2寸表示为,与现在的记法基本相同。到公元 1300年前后,元代刘瑾所着《律吕成书》中,已将106368.6312写成
把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。所以,我们完全可以自豪地宣称:中国是世界上最先使用小数的国家。 四、负数的最早使用 在《九章算术》中,已经引入了负数的概念和正负数加减法则。刘徽说:“两算得失相反,要令正负以名之”,这是关于正负数的明确定义,书中给出的正负数加减法则,和现在教科书中介绍的法则完全一样。 这些内容出现在书上的《方程章》中,是为解方程(组)服务的,如该章的第八题是: 今有卖牛二、羊五,以买十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖羊六、豕八,以买五牛,钱不足六百。问牛、羊、豕价各几何? 其解法为: 术曰:如方程,置牛二、羊五正,豕十三负,余钱数正:次置牛三正,羊九负,豕三正;次置牛五负,羊六正,豕八正,不足钱负。以正负术人之。 这里所说的意思就是:若每头牛、羊、豕的价格分别用x、y、z表示,则可列出如下的方程(组):
然后利用正负数去计算结果。在方程的各项系数及常数项中都出现了负数,在世界上率先把负数运用于计算之中。 在国外,有很长时期认为负数是一种“荒谬的数”,被摒弃于数的大家庭之外。直到公元7世纪,印度的婆罗门笈多才开始认识负数,欧洲第一个给予正负数以正确解释的是斐波那契,但他们已分别比我们的祖先晚七百多年和一千年左右。
五、二项式系数的规律的最早发现 在学习了多项式乘法以后,不难知道:
等等。那么,上述等式右端各项的系数有什么规律呢?
1261年,我国宋代数学有杨辉曾在他所着的《详解九章算法》中给出一个“开方作法本源”图(见下图),把指数分别
为0—6的二项式系数—一列出,并且指明,“开方作法本源出《释锁算书》,贾宪用此术。”贾宪是北宋时期的数学家,生平不详,大约生活在11世纪上半叶,这就是说,我国早在11世纪就已经认识了二项式各项系数的规律。现在,我们把这个规律简称为“贾宪三角形”。 在国外,直到15世纪,阿拉伯的数学家阿尔·卡西才用直角三角形表示了同样意义的三角形。 1527年,德国人阿皮亚纳斯在其所着的一本算术书的封面上也曾印有这个二项式系数表。16、17世纪,欧洲还有许多数学家也都提出过类似贾宪的三角形,其中以帕斯卡最为有名,欧洲人把这种二项式系数表称为“帕斯卡三角形”,但那已经是1654年的事了,时间要比贾宪晚600多年,就是与杨辉相比,也要落后近400年。 当然,在世界数学发展史上,中国数学的“世界之最”远远不止上面介绍的五个方面。但由此可以看到,我们的祖国是一个历史悠久的文明古国,我们中华民族是一个对世界文明的发展作出过许多贡献的伟大民族,我们的祖先在数学方面所取得的辉煌业绩,必将彪炳千古,为世界各国人民所赞颂。
Ⅲ 中国和国外在古代用的计算工具是什么
在人类文明发展的历史上中国曾经在早期计算工具的发明创造方面写过光辉的一页。远在商代,中国就创造了十进制记数方法,领先于世界千余年。
到了周代,发明了当时最先进的计算工具——算筹。这是一种用竹、木或骨制成的颜色不同的小棍。计算每一个数学问题时,通常编出一套歌诀形式的算法,一边计算,一边不断地重新布棍。中国古代数学家祖冲之,就是用算筹计算出圆周率在3.1415926和3.1415927之间。这一结果比西方早一千年。
珠算盘是中国的又一独创,也是计算工具发展史上的第一项重大发明。这种轻巧灵活、携带方便、与人民生活关系密切的计算工具,最初大约出现于汉朝,到元朝时渐趋成熟。珠算盘不仅对中国经济的发展起过有益的作用,而且传到日本、朝鲜、东南亚等地区,经受了历史的考验,至今仍在使用。
中国发明创造指南车、水运浑象仪、记里鼓车、提花机等,不仅对自动控制机械的发展有卓越的贡献,而且对计算工具的演进产生了直接或间接的影响。例如,张衡制作的水运浑象仪,可以自动地与地球运转同步,后经唐、宋两代的改进,遂成为世界上最早的天文钟
记里鼓车则是世界上最早的自动计数装置。提花机原理对计算机程序控制的发展有过间接的影响。中国古代用阳、阴两爻构成八卦,也对计算技术的发展有过直接的影响。莱布尼兹写过研究八卦的论文,系统地提出了二进制算术运算法则。他认为,世界上最早的二进制表示法就是中国的八卦。
Ⅳ 关于积分计算
积分的基本原理其实就是将不规则的图形无限分割为规则的图形,然后通过无线规则的图形叠加计算,这里我就不细说了,相信你也看过很多遍了。而关于你问的其它问题,我觉得你学习积分仅仅是学了解题方法而已,并没有完全学习到数学的真谛,也可以说是数学知识不全面吧(其实我也如此,如果你能把现有数学理论弄懂,那绝对是大师级的人物)。
好了,言归正传,关于你问的问题,其实说白了就是数学中极限的问题。极限是一个有点抽象的概念(个人觉得更多的是迷茫),因为它没办法在实体中具体表现来,我们只能“乐观”的认为它是我们想象的那样(不知道这句话你是否理解,我只是按照我思考的方式进行阐述的),而事实也正是如此,所以我们所谓的“乐观”其实是有一定道理的。给你举一个例子,0.9999999………(9无限循环)和1的大小问题。学过数学分析的都知道,他们是一样大的,证明的方法有很多,也很简单(如果不了解可以自行网络),但是即使有许许多多令人信服的证明,总还是无法根除我心里疙瘩,为了根除这个疙瘩,就必须要要理解“无限循环”这个概念,其实也就是极限的概念。所以我认为,你如果要想彻彻底底的弄懂高等数学中的问题,首先要做的就是理解“极限”(只会解题是没有用的,因为给你解的题目,都是属于“特例”的题目,而对于生活中的绝大部分都是“非特例”)。这里我给你推荐数学分析,从数学最最基本的科目学起,不要以解题为目的,而是理解,就像哲学家思考哲学问题那样,彻彻底底的理解,然后在此基础上,再学习其它数学科目。
Ⅳ 1/6+1/4等于多少。
1/6+1/4=2/12+3/12=(2+3)/12=5/12。
分数加法运算法则
1、同分母分数相加,分母不变,即分数单位不变,分子相加,能约分的要约分。
例1:。他把公分母12写在下面,相应的新分子写在上面,相加得17/12,可见他已掌握了通分的方法。
欧洲直到17世纪,多数的书在计算分数相加时都不要求用最小公倍数。只有温盖特(Wingste,E.)所着初等算术课本给出了最小公分母的求法。
Ⅵ 负数在外国是怎样产生的
据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成||| ,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作.
中国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.
刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.
中国古代着名的数学专着《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.”
这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是中国数学家杰出的贡献之一.
用不同颜色的数表示正负数的习惯,一直保留到现在.现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱.
负数是正数的相反数.在实际生活中,我们经常用正数和负数来表示意义相反的两个量.夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷.
在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数.这种引入方法可以在某种特殊的问题情景中给出负数的直观理解.而在古代数学中,负数常常是在代数方程的求解过程中产生的.对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念.3世纪的希腊学者丢番图的着作中,也只给出了方程的正根.然而,在中国的传统数学中,已较早形成负数和相关的运算法则.
除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致.特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则.他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多.在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根.而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数.直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题.
与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性.16、17世纪欧洲大多数数学家不承认负数是数.帕斯卡认为从0减去4是纯粹的胡说.帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理.英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年).他对此解释到:因为a>0时,英国着名代数学家德·摩根 在1831年仍认为负数是虚构的.他用以下的例子说明这一点:“父亲56岁,其子29岁.问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2.他称此解是荒唐的.当然,欧洲18世纪排斥负数的人已经不多了.随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立.
Ⅶ 中国历史上和外国发现数学问题有争议的
勾股定理:中国叫勾股定理或商高定理,外国叫毕达哥拉斯定理或百牛定理。相传最早发现的是商代的商高,大约比毕达哥拉斯早500-600年
杨辉三角:中国叫杨辉三角或贾宪三角,外国叫帕斯卡三角形。最早发现的是北宋的贾宪在约1050年的《释锁算术》中。B·帕斯卡在1654《论算术三角形》 中介绍。比贾宪晚了近600年
圆周率:公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。
其实还有很多的,真的不能小看中国人的智慧了,只是一时找不到而已……
Ⅷ 外国人没有中国的九九乘法表,那他们怎么算乘法的
中国的九九乘法表使我们每个人都熟记于心的,算起来很是方便。小孩儿大人张口就来。算起低位数的乘法比较方便。那么外国也有他们的一套计算方法。那就让我来说一说吧。
所以你去外国住居住一段时间,你可能就会被他们的计算能力给震惊,从而自豪于你的九九乘法表等能力。