1. 皮带流水线的技术指标
1、日光灯 2、灯罩 3、工艺图板 4、工位支架 5、仪表格板 6、皮带 7、铝合金型材 8、铝合金型材 9、工具箱 10、可调脚蹄
2. DSP中的流水线技术应该怎么理解
原理
流水线是一种在时间上串行,在空间上并行的技术,其基本原理如图1所示。将整个电路划分为若干个流水线级,流水线每级之间设置寄存器锁存上一级输出的数据;每一级只完成数据处理的一部分;一个时钟周期完成一级数据处理,然后在下一个时钟到来时将处理后的数据传递给下一级;第一组数据进入流水线后,经过一个时钟周期传到第二级,同时第二组数据进入第一级,数据队列依次前进。每组数据都要经过所有的流水级后才能得到最后的计算结果,但是对整个流水线而言,每个时钟都能计算出一组结果,所以平均计算一组数据只需要一个时钟周期的时间,这样就大大提高了数据处理速度,电路在单位时间内处理的数据量就愈大,即电路的吞吐量就越大,保证整个系统以较高的频率工作。
DSP中采用流水线技术的优势
(1)采用流水线技术普遍比不用流水线工作速度显着提高,体现流水线技术在高速DSP运算上的优势。
(2)采用流水线技术在资源耗用(逻辑单元与寄存器个数、存储器位数)上有所增加。
(3)采用不同的流水线级数在速度指标和资源耗用率上有所不同,流水线级数增加,速度指标不一定增加,但资源耗用大大增加,所以应注意速度和资源耗用指标的权衡。如对16位加法器,如不用M4K(专用存储器资源),以采用2级流水线最佳;如选用M4K,则取6级流水最佳。8位乘法器则以2级或6级流水最佳。对于其他DSP运算,在设计时必须通过反复比较、设计,选择符合系统性能要求的流水线级数。
3. CPU的流水线的各方面的性能指标是指哪些方面
性能指标
·主频
主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的认识,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的量值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器生产厂家,有人曾经拿过一块1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。
当然,主频和实际的运算速度是有关的,只能说主频是CPU性能表现的一个方面,而不能代表CPU的整体性能。
·外频
外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面我们在前端总线的介绍中谈谈两者的区别。
·前端总线(FSB)频率
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。
其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。
·CPU的位和字长
位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。
字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
·倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。
·缓存
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。
L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量通常有256KB-2MB,而服务器和工作站上用CPU的L2高速缓存可以有256KB-3MB,有的4MB也不为过。
L3Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
4. 如何设计生产流水线
单一品种流水线组织设计的一般内容有:
① 确定流水线的生产节拍;
② 组织工序同期化及工作地(设备)需要量;
③ 确定流水线的工人需要量,合理地配备人数;
④ 选择合理的运输工具;
⑤ 流水线生产的平面布置;
⑥ 制定流水线标准计划指示图;
⑦ 对流水线组织的经济效果进行评价。
方法/步骤
计算流水线的节拍
流水线、自动化流水线的节拍就是顺序生产两件相同制品之间的时间间隔。它表明了流水线生产率的高低,是流水线最重要的工作参数。其计算公式如下:
r=F/N
其中:r—流水线的节拍(分/件),F—计划期内有效工作时间(分),N—计划期的产品产量(件).这里 :F=F0K,F0—计划期内制度工作时间(分),K—时间利用系数。
确定系数K时要考虑这样几个因素:设备修理、调整、更换模具的时间,工人休息的时间。一般K取0.9—0.96,两班工作时间K取0.95,则F为:
F=FOK=306×2×8×0.95 ×60=279072(分)
计划期的产品产量N.除应根据生产大纲规定的出产量计算外,还应考虑生产中不可避免的废品和备品的数量。
当生产线、生产线制造上加工的零件小,节拍只有几秒或几十秒时,零件就要采用成批运输,此时顺序生产两批同样制品之间的时间间隔称为节奏,它等于节拍与运输批量的乘积。流水线采取按批运输制品时,如果批量较大,虽然可以简化运输工作,但流水线的在制品占用量却要随之增大。所以对劳动量大、制件重量大、价值高的产品应采用较小的运输批量;反之,则应扩大运输的批量。
进行工序同期化,计算工作地(设备)需要量
流水线的节拍确定以后,要根据节拍来调节工艺过程,使各道工序的时间与流水线的节拍相等或成整数倍比例关系,这个工作称为工序同期化。工序同期化是组织流水线的必要条件,也是提高设备负荷和劳动生产率、缩短生产周期的重要方法。
进行工序同期化的措施有:
① 提高设备的生产效率。可以通过改装设备、改变设备型号、同时加工几个制件来提高生产效率;
② 改进工艺装备。采用快速安装卡具、模具,减少装夹零件的辅助时间;
③ 改进工作地布置与操作方法,减少辅助作业时间;
④ 提高工人的工作熟练程度和效率;
⑤ 详细地进行工序的合并与分解。首先将工序分成几部分,然后根据节拍重新组合工序,以达到同期化的要求,这是装配工序同期化的主要方法。
工序同期化以后,可以根据新确定的工序时间来计算各道工序的设备需要量,它可以用下式计算:
m(i)=t(i)/r
式中:mi—第i道工序所需工作地数(设备台数),ti—第i道工序的单件时间定额(分)包括工人在传送带上取放制品的时间。一般来说,计算出的设备数不是整数,所取的设备数为大于计算数的邻近整数。若某设备的负荷较大 ,就应转移部分工序到其它设备上或增加工作时间来减少设备的负荷。
计算工人需要量,合理配备工人
工业流水线、涂装线的工序数确定以后,就可计算流水线上的工人需要量。
(1) 以手工劳动和使用手工工具为主的流水线工人需要量可用下式计算:
pi=sigwi
式中: Pi—第i道工序工人需要量(人), g—日工作班次, si—第i道工序工作地数,wi—每个工作地同时工作人数(人)
p=Σm i=1pi=Σm i=1sigwi
这里 P为流水线操作工人总数(人)。
(2)以设备加工为主的流水线工人需要量可采用下式计算:
p=(1+b 100)Σm i=1Sig fi
式中:b—后备工人百分比,fi—第i道
流水线上传送带的速度与长度的计算
传送带运行的速度(V)可由下式求得:
V=s[]r(米/分)
式中s表产品间隔长度。由上式可知节拍r为定值时,产品间隔长度s越大,传送带运行速度越大;s越小,V亦越小。
产品间隔长度的选取要根据具体情况来确定,其最小限度为0.7-0.8米,为照顾其它原因,还要给予附加的宽裕长度。
流水线传送带的长度可由右式计算:
L=mB+X
其中:L—传送带长度,m—工序数,B—工序间隔长度,X—传送带两端附加富裕量。
流水线平面布置设计
流水线的平面设计应当保证零件的运输路线最短,生产工人操作方便,辅助服务部门工作便利,最有效地利用生产面积,并考虑流水线之间的相互衔接。为满足这些要求,在流水线平面布置时应考虑流水线的形式、流水线内工作地的排列方法等问题。
生产流水线、自动化流水线的形状有直线形、直角形、开口形、环形等,如图2-1所示。
流水线内工作地的排列要符合工艺路线,当工序具有两个以上工作地时,要考虑同一工序工作地的排列方法。一般当有两个或两个以上偶数个同类工作地时,要考虑采用双列布置,将它们分列在运输路线的两例。但当一个工人看管多台设备时,要考虑使工人移动的距离尽可能短。
流水线的位置涉及到各条流水线间的相互关系,要根据加工部件装配所要求的顺序排列,整体布置要认真考虑物料流向问题,从而缩短路线,减少运输工作量。总之,要注意合理地、科学地进行流水生产过程空间组织。
流水线标准计划指示图表的制定
流水线上每个工作地都按一定的节拍重复地生产,所以可制订出流水线的标准计划指示图表,表示出流水线生产的期量标准、工作制度和工作程序等等,为生产作业计划的编制提供依据。连续流水线的标准计划指示图表比较简单,只要规定整个流水线工作的时间与程序就可以了。间断流水线的标准计划指示图表比较复杂,要规定每一工序的各工作地工作的时间与程序。
6
流水线经济效果指标的评价
流水线的经济效果指标主要有,产品产量增加额及增长率,劳动生产率及增长速度,流动资金占用量的节约额,产品成本降低额及降低率,追加投资回收期,年度综合节约额等等。除了上述数量指标外,还要考虑一些不可定量的指标,如劳动条件,环境保护的改善等。
企业应根据本身的实际情况进行单一品种流水线设计,所设计的流水线应符合企业的生产要求,能给企业带来良好的经济效益。否则,就必须对流水线进行适当的调整、重新设计或直接淘汰
5. 流水线技术的性能指标
衡量一种流水线处理方式的性能高低的书面数据主要由吞吐率、效率和加速比这三个参数来决定。 指的是计算机中的流水线在特定的时间内可以处理的任务或输出数据的结果的数量。流水线的吞吐率可以进一步分为最大吞吐率和实际吞吐率。它们主要和流水段的处理时间、缓存寄存器的延迟时间有关,流水段的处理时间越长,缓存寄存器的延迟时间越大,那么,这条流水线的吞吐量就越小。因为,在线性流水线中,最大吞吐率Tpmax=流水线时钟周期△T/1=max(T1,...Ti,..Tm)+T1/1,而其中,m是流水线的段数,i是特定过程段执行时间。如果,一条流水线的段数越多,过程执行时间越长,那么,这条流水线的理论吞吐率就越小。
由此,要对于流水线的瓶颈部分的处理主要在于减少流水段的处理时间。实现的方法一般有两种:
1、把瓶颈部分的流水线分拆,以便任务可以充分流水处理。流水段的处理时间过长,一般是由于任务堵塞造成的,而任务的堵塞会导致流水线不能在同一个时钟周期内启动另一个操作,可以把流水段划分,在各小流水段中间设置缓存寄存器,缓冲上一个流水段的任务,使流水线充分流水。假如X流水段的处理时间为3T,可以把X流水段再细分成3小段,这样,每小段的功能相同,但是处理时间已经变成3T/3=T了。
2、在瓶颈部分设置多条相同流水段,并行处理。对付流水段的处理时间过长,还有另外一种方法,那就是把瓶颈流水段用多个相同的并联流水段代替,在前面设一个分派单元来对各条流水段的任务进行分派。仍然假设瓶颈流水段的处理时间是△3T,那么经过3条并联流水段的同时处理,实际需要的时间只是△T。这样,就达到了缩短流水段处理时间,但这种方法比较少以采用,因为要3段相同的流水段并联,成本较高,而且,分派单元会比较麻烦处理。 使用效率:指流水线中,各个部件的利用率。由于流水线在开始工作时存在建立时间;在结束时存在排空时间,各个部件不可能一直在工作,总有某个部件在某一个时间处于闲置状态。用处于工作状态的部件和总部件的比值来说明这条流水线的工作效率。
6. 指令集流水线这一性能指标是在 CPU 内部定义的吗
主频也叫时钟频率,单位是MHz(或GHz),用来表示CPU的运算、处理数据的速度。CPU的主频=外频×倍频系数。主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
7. cpu性能指标的流水技术
流水线(pipeline)是 Intel首次在486芯片中开始使用的。
流水线的工作方式就像工业生产上的装配流水线。在CPU中由5~6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高了CPU的运算速度。超流水线是指某型 CPU内部的流水线超过通常的5~6步以上,例如Pentium pro的流水线就长达14步。将流水线设计的步(级)数越多,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。超标量是指在一个时钟周期内CPU可以执行一条以上的指令。这在486或者以前的CPU上是很难想象的,只有Pentium级以上CPU才具有这种超标量结构;这是因为现代的CPU越来越多的采用了RISC技术,所以才会超标量的CPU。