导航:首页 > 源码编译 > 阶梯形行列式算法

阶梯形行列式算法

发布时间:2022-07-30 12:29:38

❶ 阶梯行列式的计算方法

很高兴回答你的问题
需要用行列矩形对乘得出结果!
1.
行列式 是一个值, 它有若干个性质, 比如交换两行(列)行列式变符号 在这里, 我们并不把这类变换称为行列式的初等变换, 而是称之为行列式的性质
2.
矩阵的初等变换 矩阵是一个数表 矩阵的初等行变换来源于解线性方程组时用的消元法 矩阵的每一行对应一个方程 交换矩阵的两行相当于交换了方程组中两个方程的位置, 其它行变换都保持方程组的同解性.
希望我的回答可以帮助到你哦!望采纳!!!

❷ 求4阶行列式计算方法

给你答案其实是在害你,给你知识点,如果还不会再来问我
线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
关于线性方程组的解,有三个问题值得讨论:
(1)、方程组是否有解,即解的存在性问题;
(2)、方程组如何求解,有多少个解;
(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
(1)、把某个方程的k倍加到另外一个方程上去;
(2)、交换某两个方程的位置;
(3)、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为阶梯形方程组。
由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。
可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
系数矩阵和增广矩阵。
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。
利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容

❸ n阶行列式的计算方法是什么

1、当题目中出现低阶行列式,如二阶或三阶时,用n阶行列式定义计算。

2、当出现特殊结构时,用n阶行列式的性质,将一般行列式转化为上(下)三角行列式,如行列互换,行列倍乘倍加,行列相同或成比例,对换位置符号改变。

3、用n阶行列式的展开定理计算n阶行列式,一般思想为降阶,按某一行或某一列展开。

n阶行列式的性质

1、行列互换,行列式不变。

2、把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。

3、如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

4、如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)

5、如果行列式中两行(列)成比例,那么行列式为零。

❹ 把一个矩阵化成阶梯型矩阵有什麽技巧么

1、阶梯型矩阵必须满足的两个条件:

(1)如果它既有零行,又有非零行,则零行在下,非零行在上。

(2)如果它有非零行,则每个非零行的第一个非零元素所在列号自上而下严格单调上升。

2、阶梯型矩阵的基本特征:

如果所给矩阵为阶梯型矩阵则矩阵中每一行的第一个不为零的元素的左边及其所在列以下全为零。

(4)阶梯形行列式算法扩展阅读

行最简形矩阵:

在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,则称该矩阵为行阶梯矩阵。

若非零行的第一个非零元都为1,且这个非零元所在的列的其他元素都为0,则称该矩阵为行最简形矩阵。

1、行最简形矩阵满足两条件:

(1)它是行简化阶梯形矩阵;

(2)非零首元都为1。

2、行最简形矩阵的性质:

(1)行最简形矩阵是由方程组唯一确定的,行阶梯形矩阵的行数也是由方程组唯一确定的。

(2)行最简形矩阵再经过初等列变换,可化成标准形。

(3)行阶梯形矩阵且称为行最简形矩阵,即非零行的第一个非零元为1,且这些非零元所在的列的其他元素都是零。

❺ 行列式阶梯式的形式

|a 0 0 0|
|b c 0 0|
|d e f 0|
|g h i j|

|j i h g|
|0 f e d|
|0 0 c b|
|0 0 0 a|
这样的吧

❻ 行化简阶梯形行列式

先使用初等行变换,化成阶梯形
然后每一行的第1个元素,化成1
并且把这个1同一列的其余行的元素,都化成0
即可。

❼ 四阶行列式怎么计算

四阶行列式的计算方法:

第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为

1 2 3 4

1 3 4 1

1 4 1 2

1 1 2 3

第2步:第1行乘 -1 加到其余各行,得

1 2 3 4

0 1 1 -3

0 2 -2 -2

0 -1 -1 -1

第3步:r3 - 2r1,r4+r1,得

1 2 3 4

0 1 1 -3

0 0 -4 4

0 0 0 -4

所以行列式 = 10* (-4)*(-4) = 160。

(7)阶梯形行列式算法扩展阅读

四阶行列式的性质

1、在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、四阶行列式由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n。

4、四阶行列式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式。

❽ 四阶行列式的计算公式

四阶行列式的计算有许多方法:

1、可以拆成4个三阶行列式,分别乘以相应的代数余子式,然后相加。

2、可以先反复使用行列的线性变换,即一行(列)乘以某倍数加到另一行(列),化简成
阶梯型(上三角、下三角、甚至对角型)的行列式。

❾ 四阶行列式怎么算详细解答

举例说明四阶行列式的计算方法:


注意事项:

四阶行列式的性质

1、在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、四阶行列式由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n。

4、四阶行列式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式。

❿ 三阶行列式计算方法

三阶行列式计算方法,如下:

这里一共是六项相加减,整理下可以这么记:

a1(b2·c3-b3·c2) - a2(b1·c3-b3·c1) + a3(b1·c2-b2·c1)=

a1(b2·c3-b3·c2) - b1(a2·c3- a3·c2) + c1(a2·b3- a3·b2)

此时可以记住为:

a1*(a1的余子式)-a2*(a2的余子式)+a3*(a3的余子式)=

a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式)

三阶行列式的性质

性质1:行列式与它的转置行列式相等。

性质2:互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。

推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。

性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

阅读全文

与阶梯形行列式算法相关的资料

热点内容
信捷加密文件是干嘛用的 浏览:952
su模型下载怎么解压不了 浏览:182
国际体验服如何把服务器改为亚服 浏览:880
手机怎么关闭视频加密 浏览:462
单片机编程存表法 浏览:719
富士康服务器是什么 浏览:452
编译是二进制吗 浏览:262
小程序账号登录源码 浏览:876
云南社保局app叫什么 浏览:697
美女程序员吃大餐 浏览:210
项目二级文件夹建立规则 浏览:560
dns使用加密措施吗 浏览:174
php独立运行 浏览:535
手机sh执行命令 浏览:731
云服务器的角色 浏览:737
单片机频率比例 浏览:845
我的世界服务器如何关闭正版验证 浏览:508
如何查roid服务器上的 浏览:134
安卓手机主板如何撬芯片不掉电 浏览:253
php各个框架的优缺点 浏览:105