1. 哪些算法可以应用于大数据挖掘
基本上传统
数据挖掘
中的算法都可以应用,只是在大数据挖掘时需要额外考虑算法复杂性对于数据量的关系,如果是呈指数之类的关系,就不能应用了。
2. 信息发展从而衍生各种数据算法,大数据又是如何运用在我们的生活中呢
网络时代大多都是依靠各种数据算法而运行的,也有不少的数据算法是从发展中不断衍生的,大家最为熟悉的就是大数据。人人都处于大数据时代,只要使用网络必然就接触过大数据,因为它实际上就渗透在我们生活的每个角落。随着信息发展从而衍生了各种数据算法,那么大数据又是如何运用在我们的生活中呢?
当我们在使用各种软件的时候,其实就是在被试探,刷视频时长时间停留在某个视频,购物时经常查看某个价格区间的物品,那么下次打开软件时推送的就会依照上一次的使用习惯进行推送。所以大数据时代为人们增添了不少便利,更是成为了大家的及时雨。
3. 大数据时代:如何巧用算法思维,改善日常生活,警惕认知陷阱吗
主人公艾迪·莫莱(布莱德利·库珀 Bradley Cooper 饰)是一个缺乏灵感,潦倒颓废的作家。许久不联系的前小舅子给他一种正处在试验阶段的药物--NZT。服用一次之后艾迪发现自己精力充沛,思维清晰,行动敏捷,甚至能在瞬间把一些平时不易留意的细节和信息重新组合和整理并得出推论——这款名为NZT的新药物能使人发挥大脑100%的能力。借助NZT,艾迪重获灵感并进入上流社会,但大获成功之余也有致命的作用:身体不适和情绪失控。而此时埃迪已不能离开这种药,这使他进入了一个黑暗领域,而来自神秘势力的杀手也在暗处监视他……
4. 大数据和编程,有什么关系
Java是一门编程语言,实现同一个需求有上百种编程语言可以完成,Java之于大数据,就是一种工具罢了。
大数据就是一个行业,实现同一个需求同样有多种工具可以选择,狭义一点以技术的角度讲,各类框架有Hadoop,spark,storm,flink等,就这类技术生态圈来讲,还有各种中间件如flume,kafka,sqoop等等 ,这些框架以及工具大多数是用Java编写而成,但提供诸如Java,scala,Python,R等各种语言API供编程。
所以,大数据的实习需要用到Java,但是Java并不是大数据。
5. 大数据可以应用在哪些方面
可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
网络--大数据
6. 大数据思维认为海量数据结合复杂算法在应用中更加有效.对吗
建议楼主可以下一个FineBI试一试。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
7. PHP的算法可以实现大数据分析吗
1.Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为 0,则m 应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。
问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个 bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
2.Hashing
适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存
基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。 (http://www.my400800.cn)
扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。
问题实例:
1).海量日志数据,提取出某日访问网络次数最多的那个IP。
IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
3.bit-map
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
扩展:bloom filter可以看做是对bit-map的扩展
问题实例:
1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。
8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。
4.堆
适用范围:海量数据前n大,并且n比较小,堆可以放入内存
基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。
扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。
问题实例:
1)100w个数中找最大的前100个数。
用一个100个元素大小的最小堆即可。
5.双层桶划分 ----其实本质上就是【分而治之】的思想,重在“分”的技巧上!
适用范围:第k大,中位数,不重复或重复的数字
基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。
扩展:
问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。
2).5亿个int找它们的中位数。
这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。
实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
6.数据库索引
适用范围:大数据量的增删改查
基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
扩展:
问题实例:
7.倒排索引(Inverted index)
适用范围:搜索引擎,关键字查询
基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。
以英文为例,下面是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我们就能得到下面的反向文件索引:
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
检索的条件"what", "is" 和 "it" 将对应集合的交集。
正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。
扩展:
问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。
8.外排序
适用范围:大数据的排序,去重
基本原理及要点:外排序的归并方法,置换选择 败者树原理,最优归并树
扩展:
问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。
这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。
9.trie树
适用范围:数据量大,重复多,但是数据种类小可以放入内存
基本原理及要点:实现方式,节点孩子的表示方式
扩展:压缩实现。
问题实例:
1).有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 。
2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?
3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。
10.分布式处理 maprece
适用范围:数据量大,但是数据种类小可以放入内存
基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。
扩展:
问题实例:
1).The canonical example application of MapRece is a process to count the appearances of
each different word in a set of documents:
void map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
EmitIntermediate(w, 1);
void rece(String word, Iterator partialCounts):
// key: a word
// values: a list of aggregated partial counts
int result = 0;
for each v in partialCounts:
result += ParseInt(v);
Emit(result);
Here, each document is split in words, and each word is counted initially with a "1" value by
the Map function, using the word as the result key. The framework puts together all the pairs
with the same key and feeds them to the same call to Rece, thus this function just needs to
sum all of its input values to find the total appearances of that word.
2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?
经典问题分析
上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。
可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序
所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。
如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。
当然还有更好的方法,就是可以采用分布式计算,基本上就是map-rece过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是rece过程。
实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。
而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。
另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。
8. 列哪些算法可以应用于大数据挖掘
数据挖掘算法都是可以用于大数据挖掘,大数据简单来说只是说明数据量很大,一般指TB级别以上的,一台服务器无法处理,需要分布式系统来处理。
其中,数据挖掘经典十大算法为:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。
常见的分布式计算有Hadoop Spark等,如果要实时计算的,一般用Storm什么的。
9. 大数据自上而下提升统计和算法的效率
大数据自上而下提升统计和算法的效率
我们在去开发这些计算体系时,不管是软件、计算,其实都是在谈大数据分析的概念性,什么时候出现问题,我们如何达到高准确度,这只是这个问题的开始。其实作为一个计算科学家,我们经常会遇到很多的问题,有些是统计学方面的问题,但是我们没有联合统计学家一起考虑和解决这些问题。
比如说这个结果的一致性,那么还有引导程序的理论,那么就像常规的引导程序一样,都会达到一些限值,从上至下的计算,统计学的利弊权衡,什么意思呢?我们对数据计算的理解,也就是说更多的数据需要更多的计算,更多的计算能力。我们如何来做?到底是并行处理?还是子样抽取等等。你给我更多的数据,我会更高兴,因为我能够获得更高的准确度,我的错误会更小,我会以更低的成本获得更正确的答案。对于统计学家来说这是好的,但是对于做计算的来说这个不大好,因为我们将这样思考这个问题。也就是说给我一些数据,那么我们有一个新的观念,叫做控制的算法弱化,比如说我的数据量不够,我可以快速的处理它。数据太多,我的处理速度会慢下来。从计算角度来说,控制的算法能够让我更快速的处理数据,也就是算法的弱化。统计学的角度来说,能够处理更多的数据,获得更好的统计学上的答案性能提高。尽管计算的预算成本不变,但是我们能够处理更多的数据,以更快的速度,我们付出的代价就是算法的弱化。
那么,这个坐标你们不经常看,横轴指我们取样的数量,纵轴代表的是运行时间。我们看一下到底有多少的错误。我们现在就要思考固定风险。比如说在我们错误率是0.01,这个座标的区域,对于统计学家来说,如果要固定风险的话,那么必须有一定数量的样品,才能够获得这样的结果。所以,这是一个叫做典型的预计理论,大家都非常了解。同样对于在计算机科学方面,我们有所谓的负载均衡的概念,不管你有多少个样本,但是你一定要有足够的运营时间,否则的话,你是无法解决这个问题的,这是非常明确的一点。
所以,我们看一下实际的算法。有一定的运行时间,有固定的风险,在右边使用的所有算法,把算法弱化,我们就可以处理更多的数据。下面我来谈一下,这就是我们所说的问题降噪,所谓降噪就是在数据方面有一些属于制造噪音的数据。我们如何做降噪?首先,我们假设可能的答案是X这样的一个分样,然后用高准确度覆盖它,所以这是一个推理预估的过程。比如说我要找到X的值,它和Y是非常相似的,这是一个自然的预估。现在X是一个非常复杂的值,我无法做,所以我要做一个凸形的值域,我要做定性,同时可以获得最优点,我需要把它放在一个可行的规模大小之内,那么也就是任何一个固定风险都是基于X的。左边是风险,我需要它的一半,这里存在复杂性,如果想知道更多的复杂性,你们可以看一些所谓理论处理方面的文献,你们可以读一下,来做这样均衡的曲线。
我们看一下相关的内容,如果你要达到一定的风险,你必须要有一定的取样点。这是一个C,也许这个C也是计算方面很难算出来的,所以我们需要做C子集的,把这个子集进行弱化,这样我们就可以更好的计算了。我们可以做分层的层级,我们称为池域,并且根据计算的复杂度进行排序的。同时,还有统计学的复杂性,然后进行一个权衡。你们可以从数学计算出这个曲线。在这里举个例子,比如说X,刚才已经有人介绍过子集是什么意思,然后你们可以定运行时间,还有取样的复杂性,然后可以算出答案。你们看一下简单的C,复杂的C,然后你们看一下运行的时间是在下降,复杂性是一个恒值,这样你的算法更简单,可以用于大数据,既不会不会增加风险,也可以在举证方面更加简化。如果是一个信号的图值,你的运行时间由PQ值决定,你们还有一个域值的话,我们会有一个恒定的取样,大家可以同时按照“列”计算,获得我们预期的准确度,而运行时间不变,大家可以自己看这些公式。
那么,这种分析我希望大家能够记住的是和这种理论计算科学,重点就是能够把准确度放到一个水平。因为我们要去关心有关质量方面、统计学方面的风险,计算科学方面的算法能够帮助我们解决比较大的问题,就是大数据带来的大问题。同时,我们还有很多的数据理论可以适用,我们不要从统计学简单的角度来考虑,而是从计算的角度考虑。
也许你们还要去学一些统计学方面的基本理论,当然如果你们是学统计学的话,你们也要参加计算机科学的课程。对于两门都学的人,你们应该把这两个学科放到一起思考,不是统计学家只考虑统计学,计算机科学家只考虑计算机方面,我们需要解决统计学方面的风险。因此,我们可以更好的处理十万个采样点,都不会遇到问题。
10. 大数据时代 无处不在的算法应用
大数据时代 无处不在的算法应用
能不能讲讲算法在工作中的运用?你个人学习算法的过程是怎样的?我对算法还是有点怕。除此之外,你认为大学是应该多花时间学应用技术还是理论知识呢?
今天就来聊聊我自己学习算法的过程,以及算法在实际工作中的应用。
以前,我们认为大数据总是优于好算法。也就是说,只要数据量足够大,即使算法没有那么好,也会产生好的结果。
前一阵子“极客时间” App 发布了一条极客新闻:“算法比数据更重要,AlphaGo Zero 完胜旧版。”新闻的内容是谷歌人工智能团队 DeepMind 发布了新版的 AlphaGo 计算机程序,名为 AlphaGo Zero。这款软件能够从空白状态开始,不需要人类输入任何命令,便可以迅速自学围棋,并以 100 比 0 的战绩击败了上一代 AlphaGo。
AlphaGo Zero 最大的突破在于实现了“白板理论”。白板理论认为:婴儿是一块白板,可以通过后天学习和训练来提高智力。AI 的先驱图灵认为,只要能用机器制造一个类似于小孩的 AI,然后加以训练,就能得到一个近似成人智力,甚至超越人类智力的 AI。
自学成才的 AlphaGo Zero 正是实现了这一理论。AlphaGo 的首席研究员大卫·席尔瓦(David Silver)认为,从 AlphaGo Zero 中可以发现,算法比所谓的计算或数据量更为重要。事实上,AlphaGo Zero 使用的计算要比过去的版本少一个数量级,但是因为使用了更多原理和算法,它的性能反而更加强大。
由此可见,在大数据时代,算法的重要性日渐明晰。一个合格的程序员,必须掌握算法。
我不知道大家是怎样一步步开始精通算法和数据结构的。大二时,我第一次接触到了《数据结构》,因为从来没有过这方面的思维训练,当时的我学习这门课比较费力。那时候接触到的编程比较少,所以并没有很多实际经验让我欣赏和体味:一个好的数据结构和算法设计到底 “美” 在哪里。
开始学习的时候,我甚至有点死记硬背的感觉,我并不知道 “如果不这样设计”,实际上会出现哪些问题。各种时间和空间复杂度对我而言,也仅仅是一些不能融入到实际问题的数学游戏。至于“每种最坏情况、平均情况的时间空间复杂度与各种排序”,这些内容为什么那么重要,当时我想,可能因为考试会考吧。
没想到后来的时日,我又与算法重新结缘。可能是因为莱斯大学给的奖学金太高了,所以每个研究生需要无偿当五个学期的助教 。好巧不巧,我又被算法老师两次挑中当助教。所以,在命运强制下,一本《算法导论》就这样被我前前后后仔细学习了不下四遍。这样的结果是,我基本做过整本书的习题,有些还不止做了一遍。我学习算法的过程,就是反复阅读《算法导论》的过程。
那么,学习算法到底有什么用处呢?
首先,算法是面试的敲门砖国内的情况我不太清楚,但就硅谷的 IT 公司而言,不但电话面试偏算法,现场面试至少有两轮都是考算法和编程的。
大一些老一些的公司,像谷歌、Facebook、领英、Dropbox 等,都是直接在白板上写程序。小一些新一些的公司,如 Square、Airbnb 等,都是需要现场上机写出可运行的程序。Twitter、Uber 等公司则是白板上机兼备,视情况而定。
虽说还有其它考系统设计等部分,但如果算法没有打好基础,第一关就很难过,而且算法要熟悉到能够现场短时间内写出正解,所以很多人准备面试前都需要刷题。
有一次我当面试官,电话面试另外一个人,当时是用 Codepad 共享的方式,让对方写一个可运行的正则表达式解析器。45 分钟过去了,对方并没有写出来。我就例行公事地问:“你还有什么问题想问或者想了解么?” 对方估计因为写不出程序很有挫败感,就反问:“你们平时工作难道就是天天写正则表达式的解析器么?”
一瞬间,我竟无言以对。想了想,我回复说:“不用天天写。那我再给你 15 分钟,你证明给我看你还会什么,或者有什么理由让我给你进一步面试的机会?” 对方想了一会,默默挂掉了电话。
老实说,我对目前面试中偏重算法的程度是持保留意见的。算法题答得好,并不能说明你有多牛。牛人也有因为不愿刷题而马失前蹄的时候。但是除了算法测试,显然也没有更好的方法佐证候选人的实力;然而怎样才能最优化面试流程,这也是个讨论起来没完的话题,并且每次讨论必定无果而终。
其次,编程时用到的更多是算法思想,而不是写具体的算法说到实际工作中真正需要使用算法的机会,让我想一想 —— 这个范围应该在 10% 的附近游走。
有些朋友在工作中遇到算法场景多些,有的少些。更多的时候,是对业务逻辑的理解,对程序语言各种特性的熟练使用,对代码风格和模式的把握,各种同步异步的处理,包括代码测试、系统部署是否正规化等等。需要设计甚至实现一个算法的机会确实很少,即使用到,现学可能都来得及。
但是熟悉基本算法的好处在于:如果工作需要读的一段代码中包含一些基本算法思想,你会比不懂算法的人理解代码含义更快。读到一段烂代码,你知道为什么烂,烂在哪,怎么去优化。
当真的需要在程序中设计算法的时候,熟悉算法的你会给出一个更为完备的方案,对程序中出现的算法或比较复杂的时间复杂度问题你会更有敏感性。熟悉算法你还可以成为一个更优秀的面试官,可以和别的工程师聊天时候不被鄙视。
最后,不精通算法的工程师永远不是好工程师当然,除了算法导论中那些已成为经典的基本算法以及算法思想(Divide-and-conquer,Dynamic programming)等,其实我们每天接触到的各种技术中,算法无处不在。
就拿人人都会接触的存储为例吧,各种不同的数据库或者键值存储的实现,就会涉及各种分片(Sharding)算法、缓存失败(Cache Invalidation)算法、 锁定(Locking)算法,包括各种容错算法(多复制的同步算法)。 虽然说平时不太会去写这些算法 —— 除非你恰恰是做数据库实现的 —— 但是真正做到了解这项技术的算法细节和实现细节,无论对于技术选型还是对自己程序的整体性能评估都是至关重要的。
举个例子,当你在系统里需要一个键值存储方案的时候,面对可供选择的各种备选方案,到底应该选择哪一种呢?
永远没有一种方案在所有方面都是最佳的。就拿 Facebook 开源的 RocksDB 来说吧。了解它历史的人都知道,RocksDB 是构建在 LevelDB 之上的,可以在多 CPU 服务器上高效运行的一种键值存储。而 LevelDB 又是基于谷歌的 BigTable 数据库系统概念设计的。
早在 2004 年,谷歌开始开发 BigTable,其代码大量的依赖谷歌内部的代码库,虽然 BigTable 很牛,却因此无法开源。2011 年,谷歌的杰夫·迪恩和桑杰·格玛沃尔特开始基于 BigTable 的思想,重新开发一个开源的类似系统,并保证做到不用任何谷歌的代码库,于是就有了 LevelDB。这样一个键值存储的实现也用在了谷歌浏览器的 IndexedDB 中,对于谷歌浏览器的开源也提供了一定的支持。
我曾经在文章中提到过 CockroachDB,其实又可以看作是基于 RocksDB 之上的一个分布式实现。从另一个层面上讲,CockroachDB 又可以说是 Spanner 的一个开源实现。知道这些,就知道这些数据库或键值存储其实都同出一系。再来看看 LevelDB 底层的 SSTable 算法,就知道他们都是针对高吞吐量(high throughput),顺序读 / 写工作负载(sequential read/write workloads)有效的存储系统。
当然,一个系统里除了最基本的算法,很多的实现细节和系统架构都会对性能及应用有很大的影响。然而,对算法本身的理解和把握,永远是深入了解系统不可或缺的一环。
类似的例子还有很多,比如日志分析、打车软件的调度算法。
拿我比较熟悉的支付领域来说吧,比如信用卡 BIN 参数的压缩,从服务端到移动 App 的数据传输,为了让传输数据足够小,需要对数据进行压缩编码。
每个国家,比如中国、韩国、墨西哥信用卡前缀格式都不一样,如何尽量压缩同时又不会太复杂,以至于影响移动 App 端的代码复杂度,甚至形成 Bug 等,也需要对各种相关算法有详尽地了解,才有可能做出最优的方案。
关于算法我们来总结一下:
在大数据时代,数据和算法都同等重要,甚至算法比计算能力或数据量更为重要。
如何学习算法呢?读经典着作、做题,然后在实践中阅读和使用算法。
算法是面试的敲门砖,可以帮助你得到一份自己喜欢的工作。
写程序中用到的更多是算法思想,不是写具体的算法。
不精通算法的工程师永远不会是一个优秀的工程师,只有对各种相关算法有详尽理解,才有可能做出最优的方案。