⑴ linux编译内核步骤
一、准备工作
a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。
b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。
c) 下载一份纯净的Linux内核源码包,并解压好。
注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。
不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/moles/`uname -r`/build/.config
d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。
例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。
[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version
arm-linux-gcc (Buildroot 2010.11) 4.3.5
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for ing conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
注:arm的工具链,可以从这里下载:回复“ARM”即可查看。
二、设置编译目标
在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。
如果你是为当前使用的PC机编译内核,则无须设置。
否则的话,就要明确设置。
这里以arm为例,来说明。
有两种设置方法():
a) 修改Makefile
打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。
ARCH := arm
CROSS_COMPILE := arm-linux-
注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。
b) 每次执行make命令时,都通过命令行参数传入这些信息。
这其实是通过make工具的命令行参数指定变量的值。
例如
配置内核时时,使用
make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
编译内核时使用
make ARCH=arm CROSS_COMPILE=arm-linux-
注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
ARCH?= $(SUBARCH)
CROSS_COMPILE ?=
经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。
而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。
最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。
因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。
SRCARCH := $(ARCH)
ifeq ($(ARCH),i386)
SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),sparc64)
SRCARCH := sparc
endif
ifeq ($(ARCH),sh64)
SRCARCH := sh
endif
三、配置内核
内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。
但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。
以arm为例,具体做法如下。
a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。
注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。
/lib/moles/`uname -r`/build/.config
这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。
b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。
注
⑵ 什么叫做内核编译,为什么要进行内核编译呢
对开源操作系统(主要是指Linux)的内核源代码在本机进行有针对性的编译,就叫做内核编译。
编译内核的目的主要是改变内核的默认选项,比如内核原来不支持某硬件,原因是内核的相应选项默认状态是disactivated,需要改变。
当然,也有人把新版的linux装在旧机子上。这样,许多在内核里activated的硬件,他没有,将来也不需要。那么,就可以在内核里去掉。以及一些服务、特殊的功能等等,如果用不着,比如机子是服务器的话,最好在内核里关掉,"精兵简政"。这是以系统安全和提高效率为目的。
有专门的工具对其进行编译。这个问题不是几句话能说明白的。看你的提问就知道你是刚刚学习这些内容,建议不要好高骛远,先把c语言学好,然后再研究这些东西。
欢迎访问我的论坛:)
http://www.chinesebloger.com
期待您的支持:)
⑶ 编译linux内核是怎么区分芯片的
Processor family --->处理器系列,请按照你实际使用的CPU选择。这里选择处理器的类型,主要目的是用来优化。内核不会运行在比你选的构架还要老的机器上。比如,你选了Pentium构架来优化内核,它将不能在486构架上运行。如果你不清楚,就选386,能让内核在所有X86构架的CPU上运行(虽然不是 最佳速度)。
⑷ Linux内核源码如何编译Ubuntu源代码在哪里呢
编译linux内核步骤:
1、安装内核
如果内核已经安装(/usr/src/目录有linux子目录),跳过。如果没有安装,在光驱中放入linux安装光盘,找到kernel-source-2.xx.xx.rpm文件(xx代表数字,表示内核的版本号),比如RedHat linux的RPMS目录是/RedHat/RPMS/目录,然后使用命令rpm -ivh kernel-source-2.xx.xx.rpm安装内核。如果没有安装盘,可以去各linux厂家站点或者www.kernel.org下载。
2、清除从前编译内核时残留的.o 文件和不必要的关联
cd /usr/src/linux
make mrproper
3、配置内核,修改相关参数,请参考其他资料
在图形界面下,make xconfig;字符界面下,make menuconfig。在内核配置菜单中正确设置个内核选项,保存退出
4、正确设置关联文件
make dep
5、编译内核
对于大内核(比如需要SCSI支持),make bzImage
对于小内核,make zImage
6、编译模块
make moles
7、安装模块
make moles_install
8、使用新内核
把/usr/src/linux/arch/i386/boot/目录内新生成的内核文件bzImage/zImage拷贝到/boot目录,然后修改/etc/lilo.conf文件,加一个启动选项,使用新内核bzImage/zImage启动。格式如下:
boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
linear
default=linux-new ### 告诉lilo缺省使用新内核启动linux ###
append="mem=256M"
image=/boot/vmlinuz-2.2.14-5.0
label=linux
read-only
root=/dev/hda5
image=/boot/bzImage(zImage)
label=linux-new
read-only
root=/dev/hda5
保留旧有的启动选项可以保证新内核不能引导的情况,还可以进入linux进行其他操作。保存退出后,不要忘记了最重要的一步,运行/sbin/lilo,使修改生效。
9、重新生成ram磁盘
如果您的系统中的/etc/lilo.conf没有使用了ram磁盘选项initrd,略过。如果您的系统中的/etc/lilo.conf使用了ram磁盘选项initrd,使用mkinitrd initrd-内核版本号,内核版本号命令重新生成ram磁盘文件,例如我的Redhat 6.2:
mkinitrd initrd-2.2.14-5.0 2.2.14-5.0
之后把/etc/lilo.conf中的initrd指向新生成的initrd-2.2.14-5.0文件:
initrd=/boot/initrd-2.2.14-5.0
ram磁盘能使系统性能尽可能的优化,具体参考/usr/src/linux/Documents/initrd.txt文件
10、重新启动,OK!
⑸ ARM有这么多的架构,内核,芯片,请问汇编指令是一样的吗,比如CORTEX M3与CORTEX A8的汇编是一样的吗
兄弟,ARM公司为了便于ARM的推广和用户开发,所以ARM系类的汇编指令集都是一样的,且一套汇编指令集足以,多了反而是累赘。
但不同的编译器可能有不同的汇编格式。
如Linux下的GCC编译器下汇编函数是这样的,GCC下的是GUN汇编。
FUNC:
MOV r1,#0x0
LDR r1,#0x30
但在ADS1.2下格式这样的,少了一个冒号,但里面的指令集都是一样的,这点无可异议。
FUNC
MOV r1,#0x0
LDR r1,#0x30
这些编译器的差异和你使用的ARM架构没有关系的
想学ARM入门,推荐周立功系类的书,很多东西讲得很到位,对于初学者很适合,也适合以后的开发,
(纯手写,有问题可继续追问)
⑹ Linux内核源码如何编译
首先uname -r看一下你当前的linux内核版本
1、linux的源码是在/usr/src这个目录下,此目录有你电脑上各个版本的linux内核源代码,用uname -r命令可以查看你当前使用的是哪套内核,你把你下载的内核源码也保存到这个目录之下。
2、配置内核 make menuconfig,根据你的需要来进行选择,设置完保存之后会在当前目录下生成.config配置文件,以后的编译会根据这个来有选择的编译。
3、编译,依次执行make、make bzImage、make moles、make moles
4、安装,make install
5、.创建系统启动映像,到 /boot 目录下,执行 mkinitramfs -o initrd.img-2.6.36 2.6.36
6、修改启动项,因为你在启动的时候会出现多个内核供你选择,此事要选择你刚编译的那个版本,如果你的电脑没有等待时间,就会进入默认的,默认的那个取决于 /boot/grub/grub.cfg 文件的设置,找到if [ "${linux_gfx_mode}" != "text" ]这行,他的第一个就是你默认启动的那个内核,如果你刚编译的内核是在下面,就把代表这个内核的几行代码移到第一位如:
menuentry 'Ubuntu, with Linux 3.2.0-35-generic' --class ubuntu --class gnu-linux --class gnu --class os {
recordfail
gfxmode $linux_gfx_mode
insmod gzio
insmod part_msdos
insmod ext2
set root='(hd0,msdos1)'
search --no-floppy --fs-uuid --set=root 9961c170-2566-41ac-8155-18f231c1bea5
linux/boot/vmlinuz-3.2.0-35-generic root=UUID=9961c170-2566-41ac-8155-18f231c1bea5 ro quiet splash $vt_handoff
initrd/boot/initrd.img-3.2.0-35-generic
}
当然你也可以修改 set default="0"来决定用哪个,看看你的内核在第几位,default就填几,不过我用过这种方法,貌似不好用。
重启过后你编译的内核源码就成功地运行了,如果出现问题,比如鼠标不能用,usb不识别等问题就好好查查你的make menuconfig这一步,改好后就万事ok了。
最后再用uname -r看看你的linux内核版本。是不是你刚下的那个呢!有没有成就感?
打字不易,如满意,望采纳。
⑺ 请简述嵌入式linux内核的编译过程
编译及安装简要步骤:
编辑Makefile版本信息
定义内核特性,生成配置文件.config,用于编译:make xconfig
编译内核:make
安装内核:make install
安装模块:make moles_install
具体步骤如下:
内核配置
先定义内核需要什么特性,并进行配置。内核构建系统(The kernel build system)远不是简单用来构建整个内核和模块,想了解更多的高级内核构建选项,你可以查看 Documentation/kbuild 目录内的内核文档。
可用的配置命令和方式:
make menuconfig
命令:make menuconfig
编译内核
编译和安装内核
编译步骤:
$ cd /usr/src/linux2.6
$ make
安装步骤 (logged as
$ make install
$ make moles_install
提升编译速度
多花一些时间在内核配置上,并且只编译那些你硬件需要的模块。这样可以把编译时间缩短为原来的1/30,并且节省数百MB的空间。另外,你还可以并行编译多个文件:
$ make -j <number>
make 可以并行执行多个目标(target)(KEMIN:前提是目标规则间没有交叉依赖项,这个怎么做到的?)
$ make -j 4
即便是在单处理器的工作站上也会很快,读写文件的时间被节省下来了。多线程让CPU保持忙碌。
number大于4不见得有效了,因为上下文切换过多反而降低的工作的速度。
make -j <4*number_of_processors>
内核编译tips
查看完整的 (gcc, ld)命令行: $ make V=1
清理所有的生成文件 (to create patches...): $ make mrproper
部分编译:$ make M=drivers/usb/serial
单独模块编译:$ make drivers/usb/serial/visor.ko
最终生成的文件
vmlinux 原始内核镜像,非压缩的
arch/<arch>/boot/zImage zlib压缩的内核镜像(Default image on arm)
arch/<arch>/boot/bzImage bzip2压缩的内核镜像。通常很小,足够放入一张软盘(Default image on i386)
⑻ LINUX内核里的 kernel/arch/arm/configs里面的文件是干什么的 怎么生成的求大白话解释~
就是不同平台的默认的配置。
比如你用的arm型号,是否编译网络模块,USB模块等等,里面分的很细的。
有了个这个配置文件,你编译内核的时候,才会有选择的编译一部分需要的源码。要不然内核中那么多源码总不能都编译了吧,只编译需要的就好了。
⑼ linux不同内核版本驱动编译的问题
楼主你好。
首先你把你的***.ko的包放到/proc/sys/对应目录
然后执行insmod 输入绝对路径 加载内核驱动
然后lsmod 查看一下有没有这个内核模块!如果能用的话 放到/etc/rc.local/配置文件即可!!!
⑽ 为什么x86和arm的架构不同,但是都能装linux呢,他们的编译时如何实现的。
rm架构和x86架构区别:
一、性能:
X86结构的电脑无论如何都比ARM结构的系统在性能方面要快得多、强得多。X86的CPU随便就是1G以上、双核、四核大行其道,通常使用45nm(甚至更高级)制程的工艺进行生产;
而ARM方面:CPU通常是几百兆,最近才出现1G左右的CPU,制程通常使用不到65nm制程的工艺,可以说在性能和生产工艺方面ARM根本不是X86结构系统的对手。
但ARM的优势不在于性能强大而在于效率,ARM采用RISC流水线指令集,在完成综合性工作方面根本就处于劣势,而在一些任务相对固定的应用场合其优势就能发挥得淋漓尽致。
二、扩展能力:
X86结构的电脑采用“桥”的方式与扩展设备(如:硬盘、内存等)进行连接,而且x86结构的电脑出现了近30年,其配套扩展的设备种类多、价格也比较便宜,所以x86结构的电脑能很容易进行性能扩展,如增加内存、硬盘等。
ARM结构的电脑是通过专用的数据接口使CPU与数据存储设备进行连接,所以ARM的存储、内存等性能扩展难以进行(一般在产品设计时已经定好其内存及数据存储的容量),所以采用ARM结构的系统,一般不考虑扩展。基本奉行“够用就好”的原则。
三实现编译:
因为linux是系统,他支持现在大多数的结构体系。而要使他移植到相应的不同的硬件平台上时,需要对内核源码进行相对应的交叉编译处理,然后才能进行烧写运行,因为都有驱动只要那个系统有对应平台的驱动就可以。

(10)不同架构内核怎么编译的扩展阅读:
Linux常用命令
1、pwd命令该命令的英文解释为print working directory(打印工作目录)。
2、输入pwd命令,Linux会输出当前目录。
3、cd命令cd命令用来改变所在目录。
4、cd / 转到根目录中
5、cd ~ 转到/home/user用户目录下
6、cd /usr 转到根目录下的usr目录中-------------绝对路径
7、cd test 转到当前目录下的test子目录中-------相对路径
8、cat命令可以用来合并文件,也可以用来在屏幕上显示整个文件的内容。
9、cat snow.txt 该命令显示文件snow.txt的内容,ctrl+D退出cat。