导航:首页 > 源码编译 > gcc编译python

gcc编译python

发布时间:2022-08-01 10:31:33

‘壹’ 怎样让python脚本与C++程序互相调用

二、Python调用C/C++

1、Python调用C动态链接库

Python调用C库比较简单,不经过任何封装打包成so,再使用python的ctypes调用即可。
(1)C语言文件:pycall.c

[html] view plain
/***gcc -o libpycall.so -shared -fPIC pycall.c*/
#include <stdio.h>
#include <stdlib.h>
int foo(int a, int b)
{
printf("you input %d and %d\n", a, b);
return a+b;
}
(2)gcc编译生成动态库libpycall.so:gcc -o libpycall.so -shared -fPIC pycall.c。使用g++编译生成C动态库的代码中的函数或者方法时,需要使用extern "C"来进行编译。
(3)Python调用动态库的文件:pycall.py

[html] view plain
import ctypes
ll = ctypes.cdll.LoadLibrary
lib = ll("./libpycall.so")
lib.foo(1, 3)
print '***finish***'
(4)运行结果:

2、Python调用C++(类)动态链接库

需要extern "C"来辅助,也就是说还是只能调用C函数,不能直接调用方法,但是能解析C++方法。不是用extern "C",构建后的动态链接库没有这些函数的符号表。
(1)C++类文件:pycallclass.cpp

[html] view plain
#include <iostream>
using namespace std;

class TestLib
{
public:
void display();
void display(int a);
};
void TestLib::display() {
cout<<"First display"<<endl;
}

void TestLib::display(int a) {
cout<<"Second display:"<<a<<endl;
}
extern "C" {
TestLib obj;
void display() {
obj.display();
}
void display_int() {
obj.display(2);
}
}
(2)g++编译生成动态库libpycall.so:g++ -o libpycallclass.so -shared -fPIC pycallclass.cpp。
(3)Python调用动态库的文件:pycallclass.py

[html] view plain
import ctypes
so = ctypes.cdll.LoadLibrary
lib = so("./libpycallclass.so")
print 'display()'
lib.display()
print 'display(100)'
lib.display_int(100)
(4)运行结果:

3、Python调用C/C++可执行程序
(1)C/C++程序:main.cpp

[html] view plain
#include <iostream>
using namespace std;
int test()
{
int a = 10, b = 5;
return a+b;
}
int main()
{
cout<<"---begin---"<<endl;
int num = test();
cout<<"num="<<num<<endl;
cout<<"---end---"<<endl;
}
(2)编译成二进制可执行文件:g++ -o testmain main.cpp。
(3)Python调用程序:main.py

[html] view plain
import commands
import os
main = "./testmain"
if os.path.exists(main):
rc, out = commands.getstatusoutput(main)
print 'rc = %d, \nout = %s' % (rc, out)

print '*'*10
f = os.popen(main)
data = f.readlines()
f.close()
print data

print '*'*10
os.system(main)
(4)运行结果:

4、扩展Python(C++为Python编写扩展模块)
所有能被整合或导入到其它python脚本的代码,都可以被称为扩展。可以用Python来写扩展,也可以用C和C++之类的编译型的语言来写扩展。Python在设计之初就考虑到要让模块的导入机制足够抽象。抽象到让使用模块的代码无法了解到模块的具体实现细节。Python的可扩展性具有的优点:方便为语言增加新功能、具有可定制性、代码可以实现复用等。
为 Python 创建扩展需要三个主要的步骤:创建应用程序代码、利用样板来包装代码和编译与测试。
(1)创建应用程序代码

[html] view plain
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int fac(int n)
{
if (n < 2) return(1); /* 0! == 1! == 1 */
return (n)*fac(n-1); /* n! == n*(n-1)! */
}

char *reverse(char *s)
{
register char t, /* tmp */
*p = s, /* fwd */
*q = (s + (strlen(s) - 1)); /* bwd */

while (p < q) /* if p < q */
{
t = *p; /* swap & move ptrs */
*p++ = *q;
*q-- = t;
}
return(s);
}

int main()
{
char s[BUFSIZ];
printf("4! == %d\n", fac(4));
printf("8! == %d\n", fac(8));
printf("12! == %d\n", fac(12));
strcpy(s, "abcdef");
printf("reversing 'abcdef', we get '%s'\n", \
reverse(s));
strcpy(s, "madam");
printf("reversing 'madam', we get '%s'\n", \
reverse(s));
return 0;
}
上述代码中有两个函数,一个是递归求阶乘的函数fac();另一个reverse()函数实现了一个简单的字符串反转算法,其主要目的是修改传入的字符串,使其内容完全反转,但不需要申请内存后反着复制的方法。
(2)用样板来包装代码
接口的代码被称为“样板”代码,它是应用程序代码与Python解释器之间进行交互所必不可少的一部分。样板主要分为4步:a、包含Python的头文件;b、为每个模块的每一个函数增加一个型如PyObject* Mole_func()的包装函数;c、为每个模块增加一个型如PyMethodDef MoleMethods[]的数组;d、增加模块初始化函数void initMole()。

‘贰’ 如何让python调用C和C++代码

二、Python调用C/C++1、Python调用C动态链接库Python调用C库比较简单,不经过任何封装打包成so,再使用python的ctypes调用即可。(1)C语言文件:pycall.c[html]viewplain/***gcc-olibpycall.so-shared-fPICpycall.c*/#include#includeintfoo(inta,intb){printf("youinput%dand%d\n",a,b);returna+b;}(2)gcc编译生成动态库libpycall.so:gcc-olibpycall.so-shared-fPICpycall.c。使用g++编译生成C动态库的代码中的函数或者方法时,需要使用extern"C"来进行编译。(3)Python调用动态库的文件:pycall.py[html]viewplainimportctypesll=ctypes.cdll.LoadLibrarylib=ll("./libpycall.so")lib.foo(1,3)print'***finish***'(4)运行结果:2、Python调用C++(类)动态链接库需要extern"C"来辅助,也就是说还是只能调用C函数,不能直接调用方法,但是能解析C++方法。不是用extern"C",构建后的动态链接库没有这些函数的符号表。(1)C++类文件:pycallclass.cpp[html]viewplain#includeusingnamespacestd;classTestLib{public:voiddisplay();voiddisplay(inta);};voidTestLib::display(){cout#include#includeintfac(intn){if(n<2)return(1);/*0!==1!==1*/return(n)*fac(n-1);/*n!==n*(n-1)!*/}char*reverse(char*s){registerchart,/*tmp*/*p=s,/*fwd*/*q=(s+(strlen(s)-1));/*bwd*/while(p

‘叁’ linux下用什么编译python

一般是用GCC来编译
python 在linux下 的编译安装
1、安装
[root@auh1st ~]# cd /usr/local/src/
[root@auh1st src]# ll
总计 0
[root@auh1st src]# wget http://www.python.org/ftp/python/2.6/Python-2.6.tar.bz2
[root@auh1st src]# tar -jxf Python-2.6.tar.bz2
[root@auh1st src]# ll
总计 10724
drwxrwxr-x 17 1000 1000 4096 2008-10-03 Python-2.6
-rw-r--r-- 1 root root 10957859 2008-10-03 Python-2.6.tar.bz2
[root@auh1st Python-2.6]# ./configure --prefix=/usr/local/python-2.6
make && make install
2、检测和设置环境变量
[root@auh1st bin]# echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin
[root@auh1st bin]# PATH="$PATH":/usr/local/python-2.6/bin
[root@auh1st bin]# echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin:/usr/local/python-2.6/bin
3、删除系统已有的,将新版本覆盖
cd /usr/bin
rm -rf python
ln -s /usr/local/python-2.6/bin/python ./python
[root@auh1st ~]# python
Python 2.6 (r26:66714, Sep 25 2013, 10:14:04)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-54)] on linux2
Type "help", "right", "credits" or "license" for more information.
>>>
至此python新版 安装成功

‘肆’ 如何编译可以在Windows下运行的带有Python支持的ARM Linux GDB

做这件事情的目的是为了在QtCreator里调试ARM Linux程序的时候,能看清楚QString、QList这些Qt特有的对象的内容,而不是一个完全看不懂的结构体。
目前(2014年8月)Linaro、CodeSourcery的GCC工具链里的GDB都不支持Python。想知道你用的GDB支持不支持,试一试就行,这样表示不支持:
(gdb) python
>print 'Hello GDB!'
>(按Ctrl+D)Python scripting is not supported in this of GDB.
这样表示支持:
(gdb) python
>print 'Hello GDB!'
>(按Ctrl+D)Hello GDB!
这件事情乍一看也很简单,只要把GDB源码下载下来,然后再配置,打开Python支持就行了。实际上会遇到的问题是,在MinGW下,又要与“\”和“:”这两个Windows路径里的刺头斗争了。我觉得我之前挺傻,编译MinGW下Qt的时候,就去硬磕源码和configure脚本去了。这次GDB的configure是自动生成的,不是给人看的,configure.ac看起来也很费劲,根本磕不下去,于是我换了个思路,在ubuntu下交叉编译吧,sudo apt-get install mingw32,这是Ubuntu下的MinGW交叉编译器。
然后是依赖,这样的GDB要依赖expat和python的开发版本。如果是ubuntu底下直接编译,apt-cache search一下他们的开发版本,然后sudo apt-get install一下就好了;给MinGW交叉编译就麻烦了。先说expat,这个好办,把http://downloads.sourceforge.net/project/expat/expat/2.1.0/expat-2.1.0.tar.gz下载下来,然后:
./configure --prefix=[安装目录,如/home/c/mingw-gdb/expat] --host=i586-mingw32msvc
make
make install
会提示一些警告,无视即可。
Python就无语了,目前的GDB貌似最高支持Python 2.7,而2.7版本的Python本身不支持MinGW…… 好在有高手做了Patch,也写了说明,可以参考这文章:http://mdqinc.com/blog/2011/10/cross-compiling-python-for-windows-with-mingw32/
但是,就算这样,编译也充满挑战,要修复很多问题,出来的Python还少“nt”模块。就在我觉得没办法的时候,突然发现Windows版Qt提供的MinGW居然内置了Python开发包,位置在Tools/mingw48_32/opt,赶紧把它拷贝到Linux下,比如/home/c/mingw-gdb/python。当然,你也必须确保ubuntu下有可用的python。
然后,给GDB打一个补丁:
--- gdb-7.8/gdb/configure 2014-07-29 20:37:42.000000000 +0800
+++ gdb-7.8-old/gdb/configure 2014-08-30 00:08:27.122042706 +0800
@@ -8263,21 +8263,22 @@
# We have a python program to use, but it may be too old.
# Don't flag an error for --with-python=auto (the default).
have_python_config=yes
- python_includes=`${python_prog} ${srcdir}/python/python-config.py --includes`
+ python_config_tool=`echo ${python_prog} | sed "s#python.exe#python-config#g"`
+ python_includes=`${python_config_tool} --includes`
if test $? != 0; then
have_python_config=failed
if test "${with_python}" != auto; then
as_fn_error "failure running python-config --includes" "$LINENO" 5
fi
fi
- python_libs=`${python_prog} ${srcdir}/python/python-config.py --ldflags`
+ python_libs=`${python_config_tool} --ldflags`
if test $? != 0; then
have_python_config=failed
if test "${with_python}" != auto; then
as_fn_error "failure running python-config --ldflags" "$LINENO" 5
fi
fi
- python_prefix=`${python_prog} ${srcdir}/python/python-config.py --exec-prefix`
+ python_prefix=`${python_config_tool} --exec-prefix`
if test $? != 0; then
have_python_config=failed
if test "${with_python}" != auto; then
@@ -8343,12 +8344,12 @@
return 0;
}
_ACEOF
-if ac_fn_c_try_link "$LINENO"; then :
+#if ac_fn_c_try_link "$LINENO"; then :
have_libpython=${version}
found_usable_python=yes
PYTHON_CPPFLAGS=$new_CPPFLAGS
PYTHON_LIBS=$new_LIBS
-fi
+#fi
rm -f core conftest.err conftest.$ac_objext \
conftest$ac_exeext conftest.$ac_ext
CPPFLAGS=$save_CPPFLAGS
这个补丁的目的是强制为检测到python。
然后给拷贝到Linux下的python开发包打一个补丁:
--- python-old/bin/python-config 2013-04-18 02:43:01.000000000 +0800
+++ python/bin/python-config 2014-08-30 00:53:16.630060288 +0800
@@ -1,4 +1,4 @@
-#!/temp/x32-480-posix-dwarf-r2/mingw32/opt/bin/python2.7.exe
+#!/usr/bin/python

import sys
import os
@@ -31,26 +31,23 @@

for opt in opt_flags:
if opt == '--prefix':
- print sysconfig.PREFIX
+ print '../python'

elif opt == '--exec-prefix':
- print sysconfig.EXEC_PREFIX
+ print '../python'

elif opt in ('--includes', '--cflags'):
- flags = ['-I' + sysconfig.get_python_inc(),
- '-I' + sysconfig.get_python_inc(plat_specific=True)]
+ flags = ['-I' + os.path.split(os.path.realpath(__file__))[0] + '/../include/python2.7']
if opt == '--cflags':
- flags.extend(getvar('CFLAGS').split())
+ flags += ['-fno-strict-aliasing -DMS_WIN32 -DMS_WINDOWS -DHAVE_USABLE_WCHAR_T -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes']
print ' '.join(flags)

elif opt in ('--libs', '--ldflags'):
- libs = getvar('LIBS').split() + getvar('SYSLIBS').split()
- libs.append('-lpython'+pyver)
+ libs = ['-lm -lpython2.7 -Wl,--out-implib=libpython2.7.dll.a']
# add the prefix/lib/pythonX.Y/config dir, but only if there is no
# shared library in prefix/lib/.
if opt == '--ldflags':
if not getvar('Py_ENABLE_SHARED'):
- libs.insert(0, '-L' + getvar('LIBPL'))
- libs.extend(getvar('LINKFORSHARED').split())
+ libs.insert(0, '-L' + os.path.split(os.path.realpath(__file__))[0] + '/../lib/python2.7/config')
print ' '.join(libs)

因为Linux下是无法运行开发包中的python.exe的,所以这个补丁借用了ubuntu的python。里面的cflags和ldflags都是在Windows底下运行原始python-config获得的。prefix和exec-prefix设成“../python”,可以在编译完以后,把python开发包拷贝到gdb安装目录里面的python子目录,这样运行GDB的时候就不需要设定PYTHONHOME环境变量了。
最后一个事情,确保你的Linux下有arm交叉编译器,我的是arm-linux-gnueabihf,是啥target就写啥。
准备工作做完了,开始配置和编译:
./configure --with-expat --host=i586-mingw32msvc --target=arm-linux-gnueabihf --with-libexpat-prefix=[expat安装位置] --with-python=[python开发包安装位置/bin/python.exe]
make
make DESTDIR=[GDB安装位置] install
然后把GDB安装位置下面的所有文件拷贝到Windows下,再把python开发包拷贝到同目录下的python子目录,大功告成。
如果提示没找到libpython2.7.dll,那就把GDB安装目录的python/bin下的拷贝到bin下。
如果发现生成的exe文件太大了,那就strip一下。
2015年9月12日追加:
在windows下调试时,一般会提示说加载不了共享库,让你用"set sysroot"或"set solib-search-path"之类设定路径的。这个问题可以通过.gdbinit文件,用上面这两条命令来设定路径解决,如果想一劳永逸,可以在编译的时候加上host_configargs环境变量来解决这个问题:
host_configargs=--with-sysroot=E:\MinGW\opt\sysroot-arm ./configure ...
或者
export host_configargs=--with-sysroot=E:\MinGW\opt\sysroot-arm
./configure ...

后面的路径是放在windows下的sysroot的位置。

‘伍’ LINUX下要在C中嵌入Python,编译的时候怎样解决库的连接问题

gcc编译时,当使用动态库编译可以按照几种写法1.gcctest.c./libSDL2-2.so2.gcctest.c-lSDL2-23.gcctest.c-L/home/test-lSDL2-2一般的编译参数都是按照2或3去写2写法的含义是从/lib或者/usr/lib目录下寻找名称为SDL2-2的库,即寻找/lib/libSDL2-2.so或者/usr/lib/libSDL2-2.so文件进行链接,当然如果没有动态库就会去找静态库,再没有应该就会在编译时报错3写法的含义是从-L参数首先从指定的目录中寻找需要链接的库文件,随后再去寻找系统文件夹中是否存在需要的库1写法的含义是将当前目录下的./libSDL2-2.so.0文件链接进最终文件,因此执行readelf-aa.out后在动态库部分所看到的路径就是./libSDL2-2.so.0,进而在执行文件时仅会从当前目录下寻找libSDL2-2.so.0文件,当执行文件时所在的目录下没有该文件时就会出现找不到库文件的操作你第二次操作时,因为function.so库文件与a.out文件在同一个目录,同时也是在该目录下执行的ldd操作及运行a.out,a.out在加载动态库时从当前目录下找到了所需要的库文件,此时能够执行成功(ldd命令实质是一个脚本,通过设置环境变量运行动态库链接器来输出所有待链接的动态库)。你可以试试将a.out拷贝至其他目录再次运行,将出现和第一次操作时一样的现象,找不到function.so文件。具体的解决方法就是修改编译参数,将./libSDL2-2.so.0修改为-lSDL2-2并将libSDL2-2.so.0文件拷贝至/usr/lib目录下,并且可能因为没有修改链接器的缓存文件(将可能找不到带版本号后缀的动态库),需要在/usr/lib目录下建立一个文件连接(ln-slibSDL2-2.so.0libSDL2-2.so)或者直接修改名称为libSDL2-2.so

‘陆’ 在红帽linux下编译python脚本出现这个问题是怎么回事

针对shell 1、添加运行权限chmod 755 filename; 2、./filename 开始执行该程序; 3、如果想查看运行过程可以这样:sh -x filename 4、如果要每次开机都运行,可以把该文件的绝对路径添加到/etc/rc.local文件中。 C程序 1、查看安装gcc编译器和相关程序没有, 2、gcc main.c -o filename; 3、./filename python程序 1、安装python程序; 2、添加运行权限(同上) 3、直接执行程序;./pythonfilename 其他的就不知道了。

‘柒’ 如何交叉编译Python到ARM-Linux平台

平时编译python用的gcc,你装个交叉编译环境,把编译器改成arm-linux-gcc编译出来的就是arm版本的

‘捌’ 我的puppy 安装好了gcc 但是编译.C文件提示找不到头文件,/usr/include下只有python的两个头文件,如何能编

你需要下载预编译好的,因为puppy跟一般的linux不一样,可能没有带开发环境,你需要 自己安装开发环境的。

‘玖’ 编译安装python需要哪些依赖

依赖库:

//使用apt 安装即可
1.gcc, make, zlib1g-dev(压缩解压缩库)
安装过程需要的库。
2.libbz2-dev
bz2支持库,若在编译安装python前没有安装,将无法通过pip install 安装提供bz2格式的第三方库,会出现unsupported archive format: .tar.bz2的错误,例如爬虫库Scrapy依赖的Twisted。
3.libsqlite3-dev
sqlite3支持库,若在编译安装python前没有安装,则python中会缺失sqlite3模块,当引入sqlite3或使用依赖sqllite3的第三方库(例如Scrapy)时,会出现ImportError: No mol named _sqllite3的错误。
//以上为编译安装前需要安装的库,可能不够全面,会不断补充。
4.其他:安装第三方库需要的库
python3-dev, libxml2-dev, libxslt1, libffi-dev, libssl-dev等,在安装第三方库会有具体说明,不做过多解释。

安装:

//通过wget获取压缩包,这里选择3.6.1版
wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tar.xz
//解压
tar xJf Python-3.6.1.tar.xz
cd Python-3.6.1
./configure
make
/*这步如果需要sudo,请使用sudo -H命令,即sudo -H make install,避免pip等模块安装失败。
错误示例(pip安装失败):The directory '/home/ls/.cache/pip' or its parent directory is not owned by the current user and caching wheels has been disabled. check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
*/
make install

‘拾’ 如何实现 C/C++ 与 Python 的通信

属于混合编程的问题。较全面的介绍一下,不仅限于题主提出的问题。
以下讨论中,Python指它的标准实现,即CPython(虽然不是很严格)

本文分4个部分

C/C++ 调用 Python (基础篇)— 仅讨论Python官方提供的实现方式
Python 调用 C/C++ (基础篇)— 仅讨论Python官方提供的实现方式
C/C++ 调用 Python (高级篇)— 使用 Cython
Python 调用 C/C++ (高级篇)— 使用 SWIG

练习本文中的例子,需要搭建Python扩展开发环境。具体细节见搭建Python扩展开发环境 - 蛇之魅惑 - 知乎专栏

1 C/C++ 调用 Python(基础篇)
Python 本身就是一个C库。你所看到的可执行体python只不过是个stub。真正的python实体在动态链接库里实现,在Windows平台上,这个文件位于 %SystemRoot%\System32\python27.dll。

你也可以在自己的程序中调用Python,看起来非常容易:

//my_python.c
#include <Python.h>

int main(int argc, char *argv[])
{
Py_SetProgramName(argv[0]);
Py_Initialize();
PyRun_SimpleString("print 'Hello Python!'\n");
Py_Finalize();
return 0;
}

在Windows平台下,打开Visual Studio命令提示符,编译命令为
cl my_python.c -IC:\Python27\include C:\Python27\libs\python27.lib

在Linux下编译命令为
gcc my_python.c -o my_python -I/usr/include/python2.7/ -lpython2.7

在Mac OS X 下的编译命令同上

产生可执行文件后,直接运行,结果为输出
Hello Python!

Python库函数PyRun_SimpleString可以执行字符串形式的Python代码。

虽然非常简单,但这段代码除了能用C语言动态生成一些Python代码之外,并没有什么用处。我们需要的是C语言的数据结构能够和Python交互。

下面举个例子,比如说,有一天我们用Python写了一个功能特别强大的函数:

def great_function(a):
return a + 1

接下来要把它包装成C语言的函数。我们期待的C语言的对应函数应该是这样的:

int great_function_from_python(int a) {
int res;
// some magic
return res;
}

首先,复用Python模块得做‘import’,这里也不例外。所以我们把great_function放到一个mole里,比如说,这个mole名字叫 great_mole.py

接下来就要用C来调用Python了,完整的代码如下:
#include <Python.h>

int great_function_from_python(int a) {
int res;
PyObject *pMole,*pFunc;
PyObject *pArgs, *pValue;

/* import */
pMole = PyImport_Import(PyString_FromString("great_mole"));

/* great_mole.great_function */
pFunc = PyObject_GetAttrString(pMole, "great_function");

/* build args */
pArgs = PyTuple_New(1);
PyTuple_SetItem(pArgs,0, PyInt_FromLong(a));

/* call */
pValue = PyObject_CallObject(pFunc, pArgs);

res = PyInt_AsLong(pValue);
return res;
}

从上述代码可以窥见Python内部运行的方式:

所有Python元素,mole、function、tuple、string等等,实际上都是PyObject。C语言里操纵它们,一律使用PyObject *。
Python的类型与C语言类型可以相互转换。Python类型XXX转换为C语言类型YYY要使用PyXXX_AsYYY函数;C类型YYY转换为Python类型XXX要使用PyXXX_FromYYY函数。
也可以创建Python类型的变量,使用PyXXX_New可以创建类型为XXX的变量。
若a是Tuple,则a[i] = b对应于 PyTuple_SetItem(a,i,b),有理由相信还有一个函数PyTuple_GetItem完成取得某一项的值。
不仅Python语言很优雅,Python的库函数API也非常优雅。

现在我们得到了一个C语言的函数了,可以写一个main测试它
#include <Python.h>

int great_function_from_python(int a);

int main(int argc, char *argv[]) {
Py_Initialize();
printf("%d",great_function_from_python(2));
Py_Finalize();
}

编译的方式就用本节开头使用的方法。
在Linux/Mac OSX运行此示例之前,可能先需要设置环境变量:
bash:
export PYTHONPATH=.:$PYTHONPATH

csh:
setenv PYTHONPATH .:$PYTHONPATH

2 Python 调用 C/C++(基础篇)
这种做法称为Python扩展。
比如说,我们有一个功能强大的C函数:
int great_function(int a) {
return a + 1;
}

期望在Python里这样使用:
>>> from great_mole import great_function
>>> great_function(2)
3

考虑最简单的情况。我们把功能强大的函数放入C文件 great_mole.c 中。
#include <Python.h>

int great_function(int a) {
return a + 1;
}

static PyObject * _great_function(PyObject *self, PyObject *args)
{
int _a;
int res;

if (!PyArg_ParseTuple(args, "i", &_a))
return NULL;
res = great_function(_a);
return PyLong_FromLong(res);
}

static PyMethodDef GreateMoleMethods[] = {
{
"great_function",
_great_function,
METH_VARARGS,
""
},
{NULL, NULL, 0, NULL}
};

PyMODINIT_FUNC initgreat_mole(void) {
(void) Py_InitMole("great_mole", GreateMoleMethods);
}

除了功能强大的函数great_function外,这个文件中还有以下部分:

包裹函数_great_function。它负责将Python的参数转化为C的参数(PyArg_ParseTuple),调用实际的great_function,并处理great_function的返回值,最终返回给Python环境。

出表GreateMoleMethods。它负责告诉Python这个模块里有哪些函数可以被Python调用。导出表的名字可以随便起,每一项有4
个参数:第一个参数是提供给Python环境的函数名称,第二个参数是_great_function,即包裹函数。第三个参数的含义是参数变长,第四个
参数是一个说明性的字符串。导出表总是以{NULL, NULL, 0, NULL}结束。
导出函数initgreat_mole。这个的名字不是任取的,是你的mole名称添加前缀init。导出函数中将模块名称与导出表进行连接。

在Windows下面,在Visual Studio命令提示符下编译这个文件的命令是
cl /LD great_mole.c /o great_mole.pyd -IC:\Python27\include C:\Python27\libs\python27.lib

/LD 即生成动态链接库。编译成功后在当前目录可以得到 great_mole.pyd(实际上是dll)。这个pyd可以在Python环境下直接当作mole使用。

在Linux下面,则用gcc编译:
gcc -fPIC -shared great_mole.c -o great_mole.so -I/usr/include/python2.7/ -lpython2.7

在当前目录下得到great_mole.so,同理可以在Python中直接使用。

本部分参考资料

《Python源码剖析-深度探索动态语言核心技术》是系统介绍CPython实现以及运行原理的优秀教程。
Python 官方文档的这一章详细介绍了C/C++与Python的双向互动Extending and Embedding the Python Interpreter
关于编译环境,本文所述方法仅为出示原理所用。规范的方式如下:3. Building C and C++ Extensions with distutils
作为字典使用的官方参考文档 Python/C API Reference Manual

用以上的方法实现C/C++与Python的混合编程,需要对Python的内部实现有相当的了解。接下来介绍当前较为成熟的技术Cython和SWIG。

3 C/C++ 调用 Python(使用Cython)


前面的小节中谈到,Python的数据类型和C的数据类型貌似是有某种“一一对应”的关系的,此外,由于Python(确切的说是CPython)本身是
由C语言实现的,故Python数据类型之间的函数运算也必然与C语言有对应关系。那么,有没有可能“自动”的做替换,把Python代码直接变成C代码
呢?答案是肯定的,这就是Cython主要解决的问题。

安装Cython非常简单。Python 2.7.9以上的版本已经自带easy_install:
easy_install -U cython

在Windows环境下依然需要Visual
Studio,由于安装的过程需要编译Cython的源代码,故上述命令需要在Visual
Studio命令提示符下完成。一会儿使用Cython的时候,也需要在Visual
Studio命令提示符下进行操作,这一点和第一部分的要求是一样的。

继续以例子说明:
#great_mole.pyx
cdef public great_function(a,index):
return a[index]

这其中有非Python关键字cdef和public。这些关键字属于Cython。由于我们需要在C语言中使用
“编译好的Python代码”,所以得让great_function从外面变得可见,方法就是以“public”修饰。而cdef类似于Python的
def,只有使用cdef才可以使用Cython的关键字public。

这个函数中其他的部分与正常的Python代码是一样的。

接下来编译 great_mole.pyx
cython great_mole.pyx

得到great_mole.h和great_mole.c。打开great_mole.h可以找到这样一句声明:
__PYX_EXTERN_C DL_IMPORT(PyObject) *great_function(PyObject *, PyObject *)

写一个main使用great_function。注意great_function并不规定a是何种类型,它的
功能只是提取a的第index的成员而已,故使用great_function的时候,a可以传入Python
String,也可以传入tuple之类的其他可迭代类型。仍然使用之前提到的类型转换函数PyXXX_FromYYY和PyXXX_AsYYY。

//main.c
#include <Python.h>
#include "great_mole.h"

int main(int argc, char *argv[]) {
PyObject *tuple;
Py_Initialize();
initgreat_mole();
printf("%s\n",PyString_AsString(
great_function(
PyString_FromString("hello"),
PyInt_FromLong(1)
)
));
tuple = Py_BuildValue("(iis)", 1, 2, "three");
printf("%d\n",PyInt_AsLong(
great_function(
tuple,
PyInt_FromLong(1)
)
));
printf("%s\n",PyString_AsString(
great_function(
tuple,
PyInt_FromLong(2)
)
));
Py_Finalize();
}

编译命令和第一部分相同:
在Windows下编译命令为
cl main.c great_mole.c -IC:\Python27\include C:\Python27\libs\python27.lib

在Linux下编译命令为
gcc main.c great_mole.c -o main -I/usr/include/python2.7/ -lpython2.7

这个例子中我们使用了Python的动态类型特性。如果你想指定类型,可以利用Cython的静态类型关键字。例子如下:

#great_mole.pyx
cdef public char great_function(const char * a,int index):
return a[index]

cython编译后得到的.h里,great_function的声明是这样的:
__PYX_EXTERN_C DL_IMPORT(char) great_function(char const *, int);

很开心对不对!
这样的话,我们的main函数已经几乎看不到Python的痕迹了:
//main.c
#include <Python.h>
#include "great_mole.h"

int main(int argc, char *argv[]) {
Py_Initialize();
initgreat_mole();
printf("%c",great_function("Hello",2));
Py_Finalize();
}

在这一部分的最后我们给一个看似实用的应用(仅限于Windows):
还是利用刚才的great_mole.pyx,准备一个dllmain.c:
#include <Python.h>
#include <Windows.h>
#include "great_mole.h"

extern __declspec(dllexport) int __stdcall _great_function(const char * a, int b) {
return great_function(a,b);
}

BOOL WINAPI DllMain(HINSTANCE hinstDLL,DWORD fdwReason,LPVOID lpReserved) {
switch( fdwReason ) {
case DLL_PROCESS_ATTACH:
Py_Initialize();
initgreat_mole();
break;
case DLL_PROCESS_DETACH:
Py_Finalize();
break;
}
return TRUE;
}

在Visual Studio命令提示符下编译:
cl /LD dllmain.c great_mole.c -IC:\Python27\include C:\Python27\libs\python27.lib

会得到一个dllmain.dll。我们在Excel里面使用它,没错,传说中的Excel与Python混合编程:

参考资料:Cython的官方文档,质量非常高:
Welcome to Cython’s Documentation

4 Python调用C/C++(使用SWIG)


C/C++对脚本语言的功能扩展是非常常见的事情,Python也不例外。除了SWIG,市面上还有若干用于Python扩展的工具包,比较知名的还有
Boost.Python、SIP等,此外,Cython由于可以直接集成C/C++代码,并方便的生成Python模块,故也可以完成扩展Python
的任务。

答主在这里选用SWIG的一个重要原因是,它不仅可以用于Python,也可以用于其他语言。如今SWIG已经支持C/C++的
好基友Java,主流脚本语言Python、Perl、Ruby、PHP、JavaScript、tcl、Lua,还有Go、C#,以及R。SWIG是基
于配置的,也就是说,原则上一套配置改变不同的编译方法就能适用各种语言(当然,这是理想情况了……)

SWIG的安装方便,有Windows的预编译包,解压即用,绿色健康。主流Linux通常集成swig的包,也可以下载源代码自己编译,SWIG非常小巧,通常安装不会出什么问题。

用SWIG扩展Python,你需要有一个待扩展的C/C++库。这个库有可能是你自己写的,也有可能是某个项目提供的。这里举一个不浮夸的例子:希望在Python中用到SSE4指令集的CRC32指令。

首先打开指令集的文档:https://software.intel.com/en-us/node/514245
可以看到有6个函数。分析6个函数的原型,其参数和返回值都是简单的整数。于是书写SWIG的配置文件(为了简化起见,未包含2个64位函数):

/* File: mymole.i */
%mole mymole

%{
#include "nmmintrin.h"
%}

int _mm_popcnt_u32(unsigned int v);
unsigned int _mm_crc32_u8 (unsigned int crc, unsigned char v);
unsigned int _mm_crc32_u16(unsigned int crc, unsigned short v);
unsigned int _mm_crc32_u32(unsigned int crc, unsigned int v);

接下来使用SWIG将这个配置文件编译为所谓Python Mole Wrapper

swig -python mymole.i

得到一个 mymole_wrap.c和一个mymole.py。把它编译为Python扩展:

Windows:
cl /LD mymole_wrap.c /o _mymole.pyd -IC:\Python27\include C:\Python27\libs\python27.lib

Linux:
gcc -fPIC -shared mymole_wrap.c -o _mymole.so -I/usr/include/python2.7/ -lpython2.7

注意输出文件名前面要加一个下划线。
现在可以立即在Python下使用这个mole了:

>>> import mymole
>>> mymole._mm_popcnt_u32(10)

阅读全文

与gcc编译python相关的资料

热点内容
kylin源码大全 浏览:687
android构建工具 浏览:422
zigy命令行选项不兼容 浏览:561
加密系统能录屏吗 浏览:190
安卓淘宝点进去跳链接如何关闭 浏览:786
u盘加密了手机读取不了 浏览:947
oracle11g启动命令 浏览:931
怎么把视频传到自己的文件夹 浏览:700
福州电动车在哪个app上摇号 浏览:818
礼书PDF 浏览:667
什么app看本子 浏览:394
如何学好编译语言 浏览:591
平面编程和切削 浏览:704
phpemoji表情符号 浏览:778
IBM云平台shor算法 浏览:577
程序员当乙方 浏览:519
php商城设计与实现的 浏览:305
php自动打印 浏览:469
哪个app多年轻人 浏览:902
租的服务器如何重装 浏览:937