㈠ C51语言的混合编程
C51编译器能对C语言源程序进行高效率的编译,生成高效简洁的代码,在绝大多数场合采用C语言编程即可完成预期的目的。但有时为了编程直观或某些特殊地址的处理,还须采用一定的汇编语言编程。而在另一些场合,出于某种目的,汇编语言也可调用C语言。在这种混合编程中,关键是参数的传递和函数的返回值。它们必须有完整的约定,否则数据的交换就可能出错,例 C语言程序与汇编语言程序的调用,其子程序如下:
PUBLIC AD ;入口地址
SEG_AD SEGMENT CODE;程序段
RSEG SEG_AD
USING 0
AD: MOV R6,#00
MOV R7,#00
SETB P1.1
ACALL DELAY
CLR P1.1
ACALL DELAY
MOV R0,#10
RR0: SETB P1.2
NOP
CLR P1.2
DJNZ R0,RR0
ACALL DELAY
MOV 30H,R6 ;A/D转换的高
;两位保存在R6中
ACALL CIR
MOV R6,30H
SETB P1.2
NOP
CLR P1.2
MOV 30H,R6
ACALL CIR
MOV R6,30H
MOV R0,#8 ;A/D转换的低
;8位保存在R7中
RR2: SETB P1.2
NOP
CLR P1.2
MOV 30H,R7
ACALL CIR
MOV R7,30H
DJNZ R0,RR2
RET
CIR: CLR C
MOV C,P1.0
MOV A,30H
RLC A
MOV 30H,A
RET
END
在以上程序中,函数的返回值为一无符号整型数,根据调用规则,返回值的高位必须在R6中,低位在R7中,这样才可保证数据的传递不出错。另外,在调用过程中,必须注意寄存器的入栈。这样在以后用到A/D转换时,在C语言中调用汇编语言子程序AD()即可。
㈡ C51编程时,可以使用标准C语言的所有数据类型。为什么“编程时常用unsigned c
这体现了嵌农和码农的价值观区别。
嵌农会精心计算一个变量的范围,而码农很少这么做,因为码农默认的数值类型一般是int32,可以满足日常范围需求,甚至像Python那样的语言自带大整数特性,根本不用考虑范围。然而嵌农呢,尤其是你说的c51,是个Intel祖传8位机,本来ram就很少,当然要精心考虑变量的大小了。像int32这样的东西太奢侈了,只能精打细算,根据现实情况精选一个范围合适的类型。鉴于大部分情况并不需要负数,所以用unsigned类型能提高0以上的数值范围。另外需要指出的是很多c51编译器里int类型是16位的。所以嵌农的悲伤就在这里,别人已经开始写算法了,你还在研究这个变量存不存得下的问题。
C51语言,由C语言继承而来的单片机编程语言。
和C语言不同的是,C51语言运行于单片机平台,而C语言则运行于普通的桌面平台。C51语言具有C语言结构清晰的优点,便于学习,同时具有汇编语言的硬件操作能力。对于具有C语言编程基础的读者,能够轻松地掌握单片机C51语言的程序设计。
㈢ C51单片机能做什么样的系统
主要用于逻辑控制方面的
比如日常的洗衣机,电磁炉这些,也可以做个小的MP3,MP4播放器啊,不过这不是单片机的专长。
工业上用的各种测量设备,都可以用单片机完成。当然,比较强悍的单片机,可以嵌入一个小的操作系统,那就是一台真正的电脑了。
㈣ c语言51单片机
没有问题,只要IDE模块里面支持你的型号即可。编译器可以将C51编译生成对应的汇编代码。
㈤ gcc编译器和嵌入式keil的C51编译器有什么不
前者是通用的C语言编译器,后者相当于是个定制版。C51中定义了一些原先C语言中没有的类型以及寄存器定义、同时鉴于单片机通常只有几KB的内存空间进行了代码生成量优化,专门用于单片机的开发,这些都是在GCC这样标准的ANSI C编译器中所没有的。
㈥ keil c51软件的作用是什么
编译程序,是单片机C语言的主要编译工具
㈦ C51编译器的全部作用
后面也少了两个}
i的作用范围是在整个main函数里面,
K是在定义处到main的最后,
static int j 是静态类型,也是在整个main函数里,只是跳出函数后值不变
另外,虚机团上产品团购,超级便宜
㈧ keil c51的所有头文件,其作用。
我来回答你的问题吧,前几天对这个方面有一定的深入了解,也写下了大量的笔记
虽然C编程的时候,对于不同的芯片,有不同的头文件,但是,万变不离其宗。
只要学会了写自己的头文件,就可以应付各类型号单片机了,就算你用的是AT89C2052,还是AT89C51,STC12C等等,都可以用一个头文件reg51.h 不过要做相应的修。
以下是我对reg51.h个人的见解:(对于你很有用的) 后面带上了在编写C51时带用的头文件,及其内部函数和宏定义的详细解说。
想了解如下方面的知识来来邮[email protected]
一, C51内存结构深度剖析
二, reg51.头文件剖析
三, 浅淡变量类型及其作用域
四, C51常用头文件
五, 浅谈中断
六, C51编译器的限制
七, 小淡C51指针
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
reg51.头文件剖析
我们平时写单片机应用程序的时候,所使用的头文件大多都是用的的reg51.h或是用reg52.h。会写C51的人都会用,但对其头文件内部的定义有所了解的人确并不多。
下面对其内部做详细解释,方便读者作进一步的了解,并能运用各类型号的单片机。因为增强型号的单片机的增强功能都是通过特殊功能寄存器控制。
打开 reg52.h 头文件,会发现是由大量的 sfr ,sbit的声明组成,甚至于还有sfr16.其实这样的声明都是与单片机内部功能寄存器(特殊功能寄存器)联系起来的,下面对其做出详细解释
sfr: 声明变量
SFR 声明一个变量,它的声明与其它的C变量声明基本相同,唯一的区别,SFR在声明的同时为其指定特殊功能寄存器作为存储地址,而不同于C变量声明的整型,字符型等等由编译器自动分配存储空间。
如reg52.h头文件,第一条声明就是sfr P0 = 0x80;
此处声明一个变量P0,并指定其存储地址为特殊功能寄存器0x80;,在加入reg52.h头文件后。编写应用程序时P0就可以直接使用而无需定义,对P0的操作就是,对内部特殊功能寄存器(0x80对应用MCU的P0口)的操作,可进行读写操作。
如果将第一条声明改为sfr K0 = 0x80; 那么,如果要把单片机的P0口全部拉低,则不能写P0=0x00;而应保存后再在应用程序中写成K0=0x00;否则编译器会提示“P0为未定义标识符”
使用方法:
sfr [variable] = [address] //为变量分配一个特殊功能寄存器。
1 等号右边,只能是十进制,十六进制整型的数据常量,,不允许带操作符的表达式
经典的8051内核支持的SFR地址从0x80H~0xFF 飞利浦80C51MX系列0x180H~0x1FF
2 SFR不能声明于任何函数内部,包括main函数。只能声明于函数外。
3 用SFR声明一个变量后,不能用取地址运算符&获取其地址, 编译无法通过,编译器会提示非法操作。
4 有一点须特别注意,51内核0x80~0xff,为特殊功能寄存器地址区间,但并不是所有的地址都有定义,如果说你所用的MCU芯片上对于某个地址没有定义,那么用sfr在定义变量的时候,不要把变量的地址分配到未定义的特殊功能寄存器上,虽然编译时能通过,用KEIL仿真时貌似是没有问题,但下载到芯片里运行时,是会出问题的。比如说,向一个未定义的特殊功能寄存器执行读操作,读出来的就是一个未知的数。(读者可自行测试,先把串口通信调通,然后做一个简单的人机交互。读出一个数后,再发给计算机,用串口调试助手或是串口监控查看。这用方法在仿真的时候很有用。)所以具体那些特殊功能寄存器能够用,就要查看你使用的芯片手册。
5 若遇到增强性的单片机,只要知道其扩展的特殊功能寄存器的地址,用SFR定
就可以很方便进行编程。
sbit: 声明变量
sbit 同样是声明一个变量,和SFR 使用方法类似,但是SBIT是用来声明一个位变量,因为,在51系列的应用中,非常有必要对SFR的单个位进行存取,而通过bit 数据类型,使其具备位寻址功能。
如,在reg52.h中有如下声明
sfr IE = 0xA8;
sbit EA = IE^7;
sbit ET2 = IE^5; //8052 only
sbit ES = IE^4;
sbit ET1 = IE^3;
sbit EX1 = IE^2;
sbit ET0 = IE^1;
sbit EX0 = IE^0;
所以,对EA的操作即是对IE最高位的操作。
但如果想让 SP DPL DPH PCON TMOC TL0 TL1 TH0 TH1 SBUF这些特殊功能寄存器具备位寻址,采用上述如IE类似的定义,是不行的,虽然修改后,在编译的时候不会出现错误,但只要用到你定义的位变量名时就会出错。原因是,只有特殊功能寄存器的地址是8的倍数(十六进制以0或8结尾)才能进行位寻址。
打开reg52.h头文件可以看到,所有用sbit声明了的特殊功能寄存器的地址均是以0或8结尾
如硬要达到上述要求,可用带参的宏定义来完成。此处不做详细说明(意义并不大)。
下面对sbit的使用做详细介绍:
随着8051的应用,非常有必要对特殊功能寄存器的单个bit位进行存取,C51编译器通过sbit 数据类型,提供了对特殊功能寄存器的位操作。
以下是sbit的三种应用形式:
一, sbit name = sfr-name^bit-position;
sfr PSW =0xD0;
sfr IE =0xA8;
sbit OV= PSW^2;
sbit CY=PSW^7;
sbit EA= IE^7;
二, sbit name= sft-address^bit-position;
sbit OV =0xD0^2;
sbit CY =0xD0^7;
sbit EA =0xA8^7;
三, sbit name= sbit-address;
sbit OV =0xD2;
sbit CY =0xD7;
sbit EA =0xAF;
现对上述三种形式的声明做必要的说明
第一种形式sbit name = sfr-name^bit-position;如sbit OV= PSW^2; 当中的这个特殊功能寄存器必须在此之前已经用sfr 定义,否则编译会出错。
bit-position范围从0~7;
第二种形式 sbit name= sft-address^bit-position如sbit OV =0xD0^2; 与第一种形式不同之外在于,此处直接使用PSW的地址.第一种形式须先定义PSW
第三种形式. sbit name= sbit-address 如sbit OV =0xD2 是直接用的OV的地址
OV的地址计算方式,是OV所在的寄存器地址加上OV的bit-position
注意:
不是所有的SFR都可位寻址。只有特殊功能寄存器的地址是8的倍数(十六进制以0或8结尾)才能进行位寻址,并且sbit声明的变量名,虽可以是任意取,但是最好不要以下划线开头,因为以下划线开头的都保留给了C51的头文件做保留字。
sfr16: 声明变量
许多8051的派生型单片机,用两个连续地址的特殊功能寄存器,来存储一个16bit的值。例如,8052就用了0xCC和0xCD来保存定时/计数寄存器2的高字节和低字节。编译器提供sfr16这种数据类型,来保存两个字节的数据。虚拟出一个16bit的寄存器。
如下:
sfr16 T2 = 0xCC
存储方面为小端存储方式,低字节在前,高字节在后。定义时,只写低字节地址,如上,则定义T2为一个16位的特殊功能寄存器。 T2L= 0CCh, T2H= 0CDh
使用方法:
sfr [variable] = [low_address]
1 等号右边,只写两个特殊功能寄存器的低地址,且只能是十进制,十六进制的整型数据常量,不允许带操作符的表达式
2 SFR不能声明于任何函数内部,包括main函数。只能声明于函数外。
3 用SFR声明一个变量后,不能用取地址运算符&获取其地址, 编译无法通过,编译器会提示非法操作。
4 当你向一个sfr16写入数据的时候,KEIL CX51 编译器生成的代码,是先写高字节,后写低字节,(可通过返汇编窗口查看)在有些情况下,这并非我们所想要的操作顺序。使用时,须注意。
5 当你所要写入sfr16的数据,当是高字节先写还是低字节先写非常重要的时候,就只能用sfr 这个关键字来定义,并且任意时刻只保存一个字节,这样操作才能保证写入正确。
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
C51常用头文件
在KEIL 中,对于单片机所使用的头文件,除了reg51 reg52以外,还有一些从各芯片制商的官网下载与reg51,reg52功能类似的头文件,需了解透外,还要对各类型单片机均可通用且相当有用的的头文件,做相应的了解。因为,内部所包含的函数与宏定义,可以及大的方便我们编写应用程序。
1字符函数 ctype.h
1 extern bit isalpha(char);
功能:检查参数字符是否为英文字母,是则返回1
2 extern bit isalnum(char)
功能:检查字符是否为英文字母或数字字符,是则返回1
3 extern bit iscntrl(char)
功能:检查参数值是否在0x00~0x1f 之间或等于0x7f,是则返回1
4 extern bit isdigit(char)
功能: 检查参数是否为数字字符,是则返回1
5 extern bit isgraph(char)
功能: 检查参数值是否为可打印字符,是则返回1,可打印字符为0x21~0x7e
6 extern bit isprint(char)
功能:除了与isgraph相同之外,还接受空格符0x20
7 extern bit ispunct(char)
功能:不做介绍。
8 extern bit islower(char)
功能:检查参数字符的值是否为小写英文字母,是则返回1
9 extern bit isupper(char)
功能:检查参数字符的值是否为大写英文字母,是则返回1
10 extern bit isspace(char)
功能:检查字符是否为下列之一,空格,制表符,回车,换行,垂直制表符和送纸。如果为真则返回1
11 extern bit isxdigit(char)
功能:检查参数字符是否为16进制数字字符,是则返回1
12 extern char toint(char)
功能:将ASCII字符0~9 a~f(大小写无关)转换成对应的16进制数字,
返回值00H~0FH
13 extern char tolower(char)
功能:将大写字符转换成小写形式,如字符变量不在A~Z之间,则不作转换而直接返回该字符
14 extern char toupper(char)
功能:将小写字符转换成大写形式,如字符变量不在a~z之间,则不作转换而直接返回该字符
15 define toascii(c) ((c)&0x7f)
功能:该宏将任何整形数值缩小到有效的ASCII范围之内,它将变量和0x7f相与从而去掉第7位以上的所有数位
16 #define tolower(c) (c-‘A’+’a’)
功能:该宏将字符与常数0x20 逐位相或
17 #define toupper(c) ((c)-‘a’+’A’)
功能:该宏将字符与常数0xdf 逐位相与
2数学函数 math.h
extern int abs (int val);
extern char cabs (char val);
extern long labs (long val);
extern float fabs (float val);
功能:返回绝对值。上面四个函数,除了形参和返回值不一样之外,
其它功能完全相同。
extern float exp (float val);
extern float log (float val);
extern float log10 (float val);
功能: exp 返回eval
log 返回 val 的自然对数
log10 返回 以10为底,val的对数
extern float sqrt (float val);
功能: 返回val的正平方根
extern int rand();
extern void srand(int n);
功能: rand返回一个0到32767之间的伪随机数,srand用来将随机数发生器初始化成一个已知的(期望)值。
Keil uVision3中的math.h库中,不包含此函数。
extern float sin (float val);
extern float cos (float val);
extern float tan (float val);
功能: 返回val的正弦,余弦,正切值。val为弧度 fabs(var) <=65535
extern float asin (float val);
extern float acos (float val);
extern float atan (float val);
extern float atan2 (float y, float x);
功能: asin 返回val的反正弦值。acos 返回val的反余弦值。
atan 返回val的反正切值。
asin atan acos的值域均为 -π/2~+π/2
atan2返回x/y,的反正切值,其值域为-π~+π
extern float sinh (float val);
extern float cosh (float val);
extern float tanh (float val);
功能:cosh返回var的双曲余弦值,sinh返回var的双曲正弦值,
tanh返回var的双曲正切值。
extern float ceil (float val);
功能: 向上取整,返回一个大于val的最小整数。
extern float floor (float val);
功能: 向下取整,返回一个小于val的最大整数。
extern float pow (float x, float y);
功能: 计算计算xy的值。当(x=0,y<=0)或(x<0.y不是整数)时会发生错误。
extern void fpsave(struct FPBUF *p)
extern void fprestore(struct FPBUF *p)
功能:fpsave 保存浮点了程序的状态,fprestore恢复浮点子程序的原始状态,当中断程序中需要执行浮点运算时,这两个函数是很有用的。
注: Keil uVision3中的math.h库中,不包含此函数。
3绝对地址访问 absacc.h
#define CBYTE ((unsigned char volatile code *) 0)
#define DBYTE ((unsigned char volatile data *) 0)
#define PBYTE ((unsigned char volatile pdata *) 0)
#define XBYTE ((unsigned char volatile xdata *) 0)
功能:CBYTE 寻址 CODE区
DBYTE 寻址 DATA区
PBYTE 寻址 XDATA(低256)区
XBYTE 寻址 XDATA区
例: 如下指令在对外部存储器区域访问地址0x1000
xvar=XBYTE[0x1000];
XBYTE[0x1000]=20;
#define CWORD ((unsigned int volatile code *) 0)
#define DWORD ((unsigned int volatile data *) 0)
#define PWORD ((unsigned int volatile pdata *) 0)
#define XWORD ((unsigned int volatile xdata *) 0)
功能:与前面的一个宏相似,只是它们指定的数据类型为unsigned int .。
通过灵活运用不同的数据类型,所有的8051地址空间都是可以进行访问。
如
DWORD[0x0004]=0x12F8;
即内部数据存储器中(0x08)=0x12; (0x09)=0xF8
4 内部函数 intrins.h
extern unsigned char _cror_ (unsigned char var, unsigned char n);
extern unsigned int _iror_ (unsigned int var, unsigned char n);
extern unsigned long _lror_ (unsigned long var, unsigned char n);
功能:将变量var 循环右移 n 位。
上三个函数的区别在于,参数及返回值的类型不同
extern unsigned char _crol_ (unsigned char var, unsigned char n);
extern unsigned int _irol_ (unsigned int var, unsigned char n);
extern unsigned long _lrol_ (unsigned long var, unsigned char n);
功能:将变量var 循环左移 n 位。
上三个函数的区别在于,参数及返回值的类型不同
例如:
#include<intrins.h>
void main()
{
unsigned int y;
y=0x0ff0;
y=_irol_(y,4); //y=0xff00
y=_iror_(y,4); //y=0x0ff0
}
void _nop_(void);
功能:_nop_产生一个8051单片机的NOP指令,C51编译器在程序调用_nop_ 函数的地方,直接产生一条NOP指令。
㈨ Keil u Vision2 和keil C51 v7 什么关系有什么区别他们分别可以用来干什么了求解。。
μVision是集成编译环境。
C51是编译器包。
形象地说μVision就是在外面跟用户打交道的(就像一个公司的销售人员,衣着光鲜,油头粉面。帮助你建立工程、调试、获取数据,端茶倒水提供服务),C51编译器包是在家里默默干活创造价值的(核心之核心其实就是几个exe文件,负责完成编译、汇编、链接等核心工作。此外由各种DLL与μVision以及操作系统接口实现后台功能)。
早期的版本(例如Keil μVision2)与51编译器包是紧密结合在一起的。如今二者已经相对比较独立了。
㈩ C语言编译器是用来做什么的
1.
C语言是一种结构化语言。它层次清晰,便于按模块化方式组织程序,易于调试和维护。
2.
C语言的表现能力和处理能力极强。它不仅具有丰富的运算符和数据类型,便于实现各类复杂的数据结构。它还可以直接访问内存的物理地址,进行位(bit)一级的操作。由于C语言实现了对硬件的编程操作,因此C语言集高级语言和低级语言的功能于一体。既可用于系统软件的开发,也适合于应用软件的开发。此外,C语言还具有效率高,可移植性强等特点。因此广泛地移植到了各类各型计算机上,从而形成了多种版本的C语言。