① 常见算法有哪些
模拟
拟阵
暴力
贪心
二分法
整体二
三分法
一般动规与递推
斯坦纳树
动态树分治
2-SAT
并查集
差分约束
最短路
最小割
费用流
最大流
有上下界网络流
虚树
矩阵树定理
最小生成树
点分治
树链剖分
prufer编码
哈夫曼树
拉格朗日乘数法
BSGS
博弈论
矩阵乘法
高斯消元
容斥原理
抽屉原理
模线性方程组
莫比乌斯反演
快速傅里叶变换
扩展欧几里得算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
广度搜索
双向广搜
启发式搜索
dancing link
回文自动机
KMP
字典树
后缀数组
AC自动机
后缀自动机
manacher
凸包
扫描线
三角剖分
旋转卡壳
半平面交
cdq分治
莫队算法
爬山算法
分数规划
模拟退火
朱刘算法
随机增量法
倍增算法
② 数据结构中有哪些基本算法
数据结构中最基本的算法有:查找、排序、快速排序,堆排序,归并排序,,二分搜索算法
等等。
1、用的最多也是最简单的数据结构是线性表。
2、有前途的又难数据结构是图 。
3、常用的80%算法是排序和查找。
③ 常用的算法有哪些,是怎么分类的
数据元素相互之间的关系称为结构。有四类基本结构:集合、线性结构、树形结构、图状结构;
集合结构:除了同属于一种类型外,别无其它关系
线性结构:元素之间存在一对一关系常见类型有: 数组,链表,队列,栈,它们之间在操作上有所区别.例如:链表可在任意位置插入或删除元素,而队列在队尾插入元素,队头删除元素,栈只能在栈顶进行插
入,删除操作.
树形结构:元素之间存在一对多关系,常见类型有:树(有许多特例:二叉树、平衡二叉树、查找树等)
图形结构:元素之间存在多对多关系,图形结构中每个结点的前驱结点数和后续结点多个数可以任意
④ 作为一个程序员,有哪些常用的算法
常用的算法有:递推法、贪心法、列举法、递归法、分治法和模拟法
原则:1. 扎实的基础。数据结构、离散数学、编译原理,这些是所有计算机科学的基础,如果不掌握他们,很难写出高水平的程序。据我的观察,学计算机专业的人比学其他专业的人更能写出高质量的软件。程序人人都会写,但当你发现写到一定程度很难再提高的时候,就应该想想是不是要回过头来学学这些最基本的理论。不要一开始就去学OOP,即使你再精通OOP,遇到一些基本算法的时候可能也会束手无策。
2. 丰富的想象力。不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。丰富的想象力是建立在丰富的知识的基础上,除计算机以外,多涉猎其他的学科,比如天文、物理、数学等等。另外,多看科幻电影也是一个很好的途径。
3. 最简单的是最好的。这也许是所有科学都遵循的一条准则,如此复杂的质能互换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。
4. 不钻牛角尖。当你遇到障碍的时候,不妨暂时远离电脑,看看窗外的风景,听听轻音乐,和朋友聊聊天。当我遇到难题的时候会去玩游戏,而且是那种极暴力的打斗类游戏,当负责游戏的那部分大脑细胞极度亢奋的时候,负责编程的那部分大脑细胞就得到了充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解。
5. 对答案的渴求。人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。
6. 多与别人交流。三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。
7. 良好的编程风格。注意养成良好的习惯,代码的缩进编排,变量的命名规则要始终保持一致。大家都知道如何排除代码中错误,却往往忽视了对注释的排错。注释是程序的一个重要组成部分,它可以使你的代码更容易理解,而如果代码已经清楚地表达了你的思想,就不必再加注释了,如果注释和代码不一致,那就更加糟糕。
8. 韧性和毅力。这也许是"高手"和一般程序员最大的区别。A good programming is 99 weat and 1 ffee。高手们并不是天才,他们是在无数个日日夜夜中磨练出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,找个10000以内的素数表,把它们全都抄下来,然后再检查三遍,如果能够不间断地完成这一工作,你就可以满足这一条。
希望对你有帮助
⑤ ACM 中常用的算法有哪些
排序(选择,冒泡,快速,归并,堆,基数,桶排序等)
递归,回溯
概率,随机
公约数,素数
因数分解
矩阵运算
线性规划
最小二乘
微积分
多项式分解和级数
图论算法:
哈夫曼树(即最优二叉树)
哈希表
Prim,Kruskal算法(即最小生成树算法)
红黑树
a-B剪枝法
深、广度搜索
拓扑排序
强连通分量
Dijkstra,Bellman-Ford,Floyd-Warashall算法(最短路径算法)
计算几何(线段相交,凸包,最近点对)
⑥ 常用的加密算法有哪些
对称密钥加密
对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。
分组密码
分组密码 Block Cipher 又称为“分块加密”或“块加密”,将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。这也就意味着分组密码的一个优点在于可以实现同步加密,因为各分组间可以相对独立。
与此相对应的是流密码:利用密钥由密钥流发生器产生密钥流,对明文串进行加密。与分组密码的不同之处在于加密输出的结果不仅与单独明文相关,而是与一组明文相关。
DES、3DES
数据加密标准 DES Data Encryption Standard 是由IBM在美国国家安全局NSA授权下研制的一种使用56位密钥的分组密码算法,并于1977年被美国国家标准局NBS公布成为美国商用加密标准。但是因为DES固定的密钥长度,渐渐不再符合在开放式网络中的安全要求,已经于1998年被移出商用加密标准,被更安全的AES标准替代。
DES使用的Feistel Network网络属于对称的密码结构,对信息的加密和解密的过程极为相似或趋同,使得相应的编码量和线路传输的要求也减半。
DES是块加密算法,将消息分成64位,即16个十六进制数为一组进行加密,加密后返回相同大小的密码块,这样,从数学上来说,64位0或1组合,就有2^64种可能排列。DES密钥的长度同样为64位,但在加密算法中,每逢第8位,相应位会被用于奇偶校验而被算法丢弃,所以DES的密钥强度实为56位。
3DES Triple DES,使用不同Key重复三次DES加密,加密强度更高,当然速度也就相应的降低。
AES
高级加密标准 AES Advanced Encryption Standard 为新一代数据加密标准,速度快,安全级别高。由美国国家标准技术研究所NIST选取Rijndael于2000年成为新一代的数据加密标准。
AES的区块长度固定为128位,密钥长度可以是128位、192位或256位。AES算法基于Substitution Permutation Network代换置列网络,将明文块和密钥块作为输入,并通过交错的若干轮代换"Substitution"和置换"Permutation"操作产生密文块。
AES加密过程是在一个4*4的字节矩阵(或称为体State)上运作,初始值为一个明文区块,其中一个元素大小就是明文区块中的一个Byte,加密时,基本上各轮加密循环均包含这四个步骤:

ECC
ECC即 Elliptic Curve Cryptography 椭圆曲线密码学,是基于椭圆曲线数学建立公开密钥加密的算法。ECC的主要优势是在提供相当的安全等级情况下,密钥长度更小。
ECC的原理是根据有限域上的椭圆曲线上的点群中的离散对数问题ECDLP,而ECDLP是比因式分解问题更难的问题,是指数级的难度。而ECDLP定义为:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。
数字签名
数字签名 Digital Signature 又称公钥数字签名是一种用来确保数字消息或文档真实性的数学方案。一个有效的数字签名需要给接收者充足的理由来信任消息的可靠来源,而发送者也无法否认这个签名,并且这个消息在传输过程中确保没有发生变动。
数字签名的原理在于利用公钥加密技术,签名者将消息用私钥加密,然后公布公钥,验证者就使用这个公钥将加密信息解密并对比消息。一般而言,会使用消息的散列值来作为签名对象。
⑦ 数据结构有哪些基本算法
数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科。

可以理解为:程序设计 = 数据结构 + 算法
数据结构算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。
1、输入:一个算法具有零个或者多个输出。以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。后面一句话翻译过来就是,如果一个算法本身给出了初始条件,那么可以没有输出。比如,打印一句话:NSLog(@"你最牛逼!");
2、输出:算法至少有一个输出。也就是说,算法一定要有输出。输出的形式可以是打印,也可以使返回一个值或者多个值等。也可以是显示某些提示。
3、有穷性:算法的执行步骤是有限的,算法的执行时间也是有限的。
4、确定性:算法的每个步骤都有确定的含义,不会出现二义性。
5、可行性:算法是可用的,也就是能够解决当前问题。
数据结果的基本算法有:
1、图搜索(广度优先、深度优先)深度优先特别重要
2、排序
3、动态规划
4、匹配算法和网络流算法
5、正则表达式和字符串匹配
6、三路划分-快速排序
7、合并排序(更具扩展性,复杂度类似快速排序)
8、DF/BF 搜索 (要知道使用场景)
9、Prim / Kruskal (最小生成树)
10、Dijkstra (最短路径算法)
11、选择算法
⑧ 计算机常用算法有哪些
贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法。
模拟退火+遗传算法混合编程例子:
http://..com/question/43266691.html
自适应序贯数论算法例子:
http://..com/question/60173220.html
⑨ c语言常用算法有哪些
0) 穷举法
穷举法简单粗暴,没有什么问题是搞不定的,只要你肯花时间。同时对于小数据量,穷举法就是最优秀的算法。就像太祖长拳,简单,人人都能会,能解决问题,但是与真正的高手过招,就颓了。
1) 贪婪算法
贪婪算法可以获取到问题的局部最优解,不一定能获取到全局最优解,同时获取最优解的好坏要看贪婪策略的选择。特点就是简单,能获取到局部最优解。就像打狗棍法,同一套棍法,洪七公和鲁有脚的水平就差太多了,因此同样是贪婪算法,不同的贪婪策略会导致得到差异非常大的结果。
2) 动态规划算法
当最优化问题具有重复子问题和最优子结构的时候,就是动态规划出场的时候了。动态规划算法的核心就是提供了一个memory来缓存重复子问题的结果,避免了递归的过程中的大量的重复计算。动态规划算法的难点在于怎么将问题转化为能够利用动态规划算法来解决。当重复子问题的数目比较小时,动态规划的效果也会很差。如果问题存在大量的重复子问题的话,那么动态规划对于效率的提高是非常恐怖的。就像斗转星移武功,对手强它也会比较强,对手若,他也会比较弱。
3)分治算法
分治算法的逻辑更简单了,就是一个词,分而治之。分治算法就是把一个大的问题分为若干个子问题,然后在子问题继续向下分,一直到base cases,通过base cases的解决,一步步向上,最终解决最初的大问题。分治算法是递归的典型应用。
4) 回溯算法
回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个
分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。
5) 分支限界算法
回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解(一般来说要获取最优解)。
⑩ 几种常用的算法简介
1、穷举法穷举法是最基本的算法设计策略,其思想是列举出问题所有的可能解,逐一进行判别,找出满足条件的解。
穷举法的运用关键在于解决两个问题:
在运用穷举法时,容易出现的问题是可能解过多,导致算法效率很低,这就需要对列举可能解的方法进行优化。
以题1041--纯素数问题为例,从1000到9999都可以看作是可能解,可以通过对所有这些可能解逐一进行判别,找出其中的纯素数,但只要稍作分析,就会发现其实可以大幅度地降低可能解的范围。根据题意易知,个位只可能是3、5、7,再根据题意可知,可以在3、5、7的基础上,先找出所有的二位纯素数,再在二位纯素数基础上找出三位纯素数,最后在三位纯素数的基础上找出所有的四位纯素数。
2、分治法分治法也是应用非常广泛的一种算法设计策略,其思想是将问题分解为若干子问题,从而可以递归地求解各子问题,再综合出问题的解。
分治法的运用关键在于解决三个问题:
我们熟知的如汉诺塔问题、折半查找算法、快速排序算法等都是分治法运用的典型案例。
以题1045--Square
Coins为例,先对题意进行分析,可设一个函数f(m,
n)等于用面值不超过n2的货币构成总值为m的方案数,则容易推导出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
这里的k是币值为n2的货币最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
对于这样的题目,一旦分析出了递推公式,程序就非常好写了。所以在动手开始写程序之前,分析工作做得越彻底,逻辑描述越准确、简洁,写起程序来就会越容易。
3、动态规划法
动态规划法多用来计算最优问题,动态规划法与分治法的基本思想是一致的,但处理的手法不同。动态规划法在运用时,要先对问题的分治规律进行分析,找出终结子问题,以及子问题向父问题归纳的规则,而算法则直接从终结子问题开始求解,逐层向上归纳,直到归纳出原问题的解。
动态规划法多用于在分治过程中,子问题可能重复出现的情况,在这种情况下,如果按照常规的分治法,自上向下分治求解,则重复出现的子问题就会被重复地求解,从而增大了冗余计算量,降低了求解效率。而采用动态规划法,自底向上求解,每个子问题只计算一次,就可以避免这种重复的求解了。
动态规划法还有另外一种实现形式,即备忘录法。备忘录的基本思想是设立一个称为备忘录的容器,记录已经求得解的子问题及其解。仍然采用与分治法相同的自上向下分治求解的策略,只是对每一个分解出的子问题,先在备忘录中查找该子问题,如果备忘录中已经存在该子问题,则不须再求解,可以从备忘录中直接得到解,否则,对子问题递归求解,且每求得一个子问题的解,都将子问题及解存入备忘录中。
例如,在题1045--Square
Coins中,可以采用分治法求解,也可以采用动态规划法求解,即从f(m,
1)和f(1,
n)出发,逐层向上计算,直到求得f(m,
n)。
在竞赛中,动态规划和备忘录的思想还可以有另一种用法。有些题目中的可能问题数是有限的,而在一次运行中可能需要计算多个测试用例,可以采用备忘录的方法,预先将所有的问题的解记录下来,然后输入一个测试用例,就查备忘录,直接找到答案输出。这在各问题之间存在父子关系的情况下,会更有效。例如,在题1045--Square
Coins中,题目中已经指出了最大的目标币值不超过300,也就是说问题数只有300个,而且各问题的计算中存在重叠的子问题,可以采用动态规划法,将所有问题的解先全部计算出来,再依次输入测试用例数据,并直接输出答案。
4、回溯法回溯法是基于问题状态树搜索的求解法,其可适用范围很广。从某种角度上说,可以把回溯法看作是优化了的穷举法。回溯法的基本思想是逐步构造问题的可能解,一边构造,一边用约束条件进行判别,一旦发现已经不可能构造出满足条件的解了,则退回上一步构造过程,重新进行构造。这个退回的过程,就称之为回溯。
回溯法在运用时,要解决的关键问题在于:
回溯法的经典案例也很多,例如全排列问题、N后问题等。
5、贪心法贪心法也是求解最优问题的常用算法策略,利用贪心法策略所设计的算法,通常效率较高,算法简单。贪心法的基本思想是对问题做出目前看来最好的选择,即贪心选择,并使问题转化为规模更小的子问题。如此迭代,直到子问题可以直接求解。
基于贪心法的经典算法例如:哈夫曼算法、最小生成树算法、最短路径算法等。