⑴ 小数乘小数的计算方法
按整数相乘计算,然后再移动小数点。之前两个数一共小数点移动几位变整数,那么就在最后结果上移回去。
⑵ 小数乘小数怎么乘有什么规律
1、先整数乘法算出积是多少,
2、看两个因数中一共有几位小数,就从积的右边起数出几位,
3、点上小数点
比如:0.5*0.37、5*37=185
原式总共有三位小数,所以0.5*0.37=0.185(即小数点向左移动三位)。
(2)小数乘法简便算法学习心得扩展阅读
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数) ×(乘号) 200(因数) =(等于号) 2000(积)
因数也叫乘数。
⑶ 五年级数学《小数乘整数》反思后的教学设计
“小数乘整数”教学设计
教学目标:
1.在生活情境中,让学生自主探索小数乘整数的计算方法。
2.让学生能正确地计算及描述小数乘整数的过程。
3.感受小数乘法在生活中的应用。
教学重难点:理解小数乘整数的算理及算法。
教学具准备:课件、作业纸。
教学过程:
一、情境引入
师:秋天到了,人们都在广场放风筝。有三个小同学也想去放风筝,他们想买一样的风筝(课件展示例题图)。大家仔细观察,从图中你了解到哪些信息?
(意图:通过生活情境的引入,调动学生的学习兴趣,渗透数学来源于生活、应用于生活的思想,并为下面学生自主探究小数乘整数提供条件。)
二、自主探索
(一)了解小数乘整数
1.说一说如果是你,想买哪种风筝?
学生自由回答。
2.根据学生汇报情况,教师提出:xx同学说想买3.5元一个的风筝,那么买这样的三个估计需要多少钱呢?
学生思考并汇报。
师:你们能不能准确算出一共需要多少钱?
学生独立计算。
指名汇报(可能可想出几种不同的方法),教师根据学生叙述板书:
方法1:连加 。
方法2:化成元角分计算,先算整元,再算整角,最后相加。
方法3:竖式笔算35角×3=105角。
方法4:竖式笔算3.5元×3=10.5元 。
(意图:在实际的问题情境中,让学生运用原有的知识经验自主地进行估算、笔算,在培养了学生的估算能力、计算能力的同时,让学生懂得估算也是检验笔算的一种方法。在探究计算方法时,教师为学生搭建了充分发挥自己能力的平台,利用已有知识解决问题,同时又了解了新的解决问题的方法—竖式笔算。)
3.小结引出课题。
师:刚才我们在解决买三个风筝一共用多少钱时,想到了几种不同的方法(教师指板书),可以用小数加法解决,可以化成元角分来解决,还想到了把元角分转化成乘法竖式来计算,同学们可真棒。
(二)自主探索小数乘整数的算理、算法。
1.比较发现
师:同学们看这个乘法算式,与以前学的乘法算式有什么不同?
学生会发现,算式中有小数或小数乘整数。
师:这就是我们今天要研究的问题。板书:小数乘整数。
2.尝试解决
教师出示0.72 × 5。
师:同学们看0.72不是钱数了,没有元角分这样的单位了,能不能计算出结果呢?
① 学生独立思考。
② 小组交流计算方法。
③ 汇报演示。学生汇报的同时展示学生计算过程。可能有两种方法:加法和乘法。引导学生进行比较,认识到乘法比较简便。
教师板演乘法竖式计算过程。
④ 理解算理算法。
师:仔细观察乘法算式,谁能给大家解释一下,你是怎样计算的。
(教师重点引导学生理解3点:怎样把乘数转化乘整数;乘积如何处理;积末尾的0如何处理。从而让学生更好地理解算理。)
⑤ 互动交流,总结概括。
师:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化乘整数乘法计算。谁能举个例子和大家说说具体的方法,计算时应注意什么呢?
学生举例子说明算理,并板书。
(意图:通过独立思考与合作交流,充分展示学生的知识潜能及合作能力,并自主获取小数乘整数的计算方法,理解算理。教师作为一名点拨者、合作者在重点处启发引导,帮助学生较好的理解小数乘整数的算理及方法。通过引导学生举例说明计算方法,给不同的学生思维发展的空间,促进了学生思维的发展。)
三、实践应用
师:(出示主题图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。
我们看图中还有几种不同的风筝,如果买3个其它形状的,需要多少钱呢?能不能很快的算出来?
学生独立计算,汇报交流。
师:下面我们就一起把风筝放飞(出课件)。
1.放飞第一个风筝。(点击第一个风筝)出示:
(1)算一算,比一比。
学生计算后,引导学生说一说是怎样算的?比较小数乘整数与整数乘整数有什么不同?
(2)想一想,做一做。
14.5× 6 3.07×8
学生独立笔算。教师巡视指导点拨。
2.放飞第二个风筝。(点击第二个风筝)出示:
(1)看谁观察得最仔细,你发现了什么?
(2)解决问题:小红家距奶奶家2.8千米,,她每天往返一次共是多少千米?
3.放飞第三个风筝。(点击第三个风筝)出示:试试你的智力。
用1到5五个数字及小数点,任意组成小数乘一位整数的算式,并算出来。(能写几道写几道)
(意图:通过多种形式的练习,既加强了学生对小数乘整数的理解,又使学生能够灵活应用所学知识解决问题,并使不同层次的学生从中体会到成功的快乐。)
⑷ 小数乘法有什么简便算法
整数乘法中的简便算法在小数中同样适用,有乘法交换律、结合律、分配律。
⑸ 小数的乘法怎么简便计算快捷计算
小数的乘法怎么简便计算快捷计算写回答
12137小数乘法的简便运算一、乘法交换律与结合律的运用。提示1:以下计算中,有的需要把一个小数拆成两个数相乘,要注意拆分后两数相乘的大小应该与原数相等,特别是小数的位数。如3.2=0.8×43.2=0.4×8 0.32=0.04×8 0.32=0.08×4 5.6=0.8×7 5.6=0.7×80.56 =0.07×8 0.56 =0.08×7 0.48=0.12×4 0.48=0.04×12提示2:应用乘法结合律解题的口诀是 连乘用结合提示3:应用乘法结合律解题的格式是a×b×c=a×(b×c)最后一个步骤是“×”,不要看成是“+”. 如 2.5×0.48=2.5×0.04×12=0.1×12=1.2A组 4.56×0.4×2.5 12.5×2.7×0.8 12.5×3.2×0.25B组 2.5×0.48 12.5×5.6 25×0.36二、乘法分配律的运用。提示1:A组中的一个因数都具备一个特点,都接近整数1、10、100等,这样的数就可以拆分成两个数相加或者相减。如 10.4=(10+0.4) 9.9=(10-0.9) 0.99=(10-0.01)但也有这样的数 8.8=(8+0.8) 4.4=(4+0.4) 0.48=(0.4+0.08)提示2:应用乘法分配律解题的口诀是 乘加乘减用分配提示3:应用乘法分配律解题的格式是(a+b)×c=a×c+b×c最后一个步骤是“+”,不要看成是“×”.如 2.5×0.48=2.5×(0.4+0.08)=2.5×0.4+2.5×0.08=1 + 0.2=1.2不是 =1 + 0.2= 2提示4:应用乘法分配律解题的最后一步,有时是数字比较大的两个数相加减,口算容易出错,这时就要打草稿竖式计算。A组 0.25×10.4 12.5×8.8 9.9×0.35B组 3.7×1.8-2.7×1.8 95.7×0.28+6.3×0.28-0.28×2 1.08×9+1.08三、比较乘法结合律与分配律在简便运算时的区别。下面各题用两种方法简算。12.5×8.8 12.5×8.8 0.25×4.8 0.25×4.8四、变一变,能简算。48×0.56+44×0.48我来试一试:0.279×343+0.657×279 0.264×519+264×0.481 9.16×1.53-0.053×91.6五、拓展提高。99.99×0.8+11.11×2.8 314×0.043+3.14×7.2-31.4×0.15
有帮助,为TA点赞
无帮助,看其他答案
广告2022-03-15
2赞·1,672浏览2018-12-08
177浏览2021-01-18
3赞·19浏览2019-07-14
24赞·833浏览2016-10-23
评论
2
⑹ 有小数点的乘法怎么用简便计算
有小数点的乘法首先先把它当成整数去相乘。然后得出答案,小数点数有几位向前。点几韦就可以了。
⑺ 小数乘法的简便计算
第一解法:
[(7+41)*(1+100+10000)+2*(44+4444)]*20/8=(48*10101+2*4488)*20/8
第二解法:
(7+41+744+4144+74444+414444)*2·5
=(7+41+700+44+4100+44+70000+4444+410000+4444)*2·5
=(70707+404040+10101+88+8888)*2.5
=(80808+404040+88+8888)*2.5
=4*(20202+101010+22+2222)*2.5
=(20202+101010+22+2222)*10
=1234560
⑻ 小数乘小数的简便算法
整数的简便运算在小数上也可以运用(五年级知识)
乘法结合律:a*(b*c)=(a*b)*c
乘法交换律:a*b=b*a
乘法分配律:a*b+a*c=a*(b+c)
加法交换律:a+b=b+c
加法结合律:a+(b+c)=(a+b)+c
减法的运算性质:a-b-c=a-(b+c);a*b-a*c=a*(b+c);
除法的运算性质:a/b/c=a/(b*c)
……
要小数乘小数的 懒得去找资料了,就将记得的列几例给你吧.. 1)2.8×1.5=1.4×3=4.2这是一类比较直观的简便计算方法。
(7.2×4.5×8.1)÷(1.8×1.5×2.7)
=7.2×4.5×8.1÷1.8÷1.5÷2.7
=(7.2÷1.8)×(4.5÷1.5)×(8.1÷2.7)
=4×3×3
=4×9
=36
8.7-8.5+8.3-8.1+7.9-7.7+7.5-7.3+7.1-6.9
={(8.7+8.3)+(7.9+7.1)+7.5}-{(8.1+6.9)+(7.7+7.3)+8.5}=1
简便算法就是把结果相加或相减后能得出整数的2个数放到一起计算
这样可以么?
⑼ 小数简便计算方法总结
简算是一种简便、迅速的运算,根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,使计算过程简单化,或直接得出结果。根据归纳,常见以下几类题型:
(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。
【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
1、加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好 与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚 才“多加的”要“减掉”。“多减的”要“加上”!
(二)运用乘法的交换律、结合律进行简算。
1、乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
(三)运用减法的性质进行简算,同时注意逆进行。
1、减法
定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】
例如:20-8-2=20-(8+2)
(四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
1、除法
定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)运用乘法分配律进行简算
1、乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
【注意】:有些题目是运用分配律的逆运算来简算:A×C+B×C=(A+B)×C:即提取公因数。
例如:75.3×99+75.3=75.3×(99+1)=75.3×100=7530
(六)混合运算(根据混合运算的法则)
注:数字搭档( 0.5和2、0.25和4、0.125和8)
总的说来,简便运算的思路是:(1)运用运算的性质、定律等。
(2)可能打乱常规的计算顺序。
(3)拆数或转化时,数的大小不能改变。
(4)正确处理好每一步的衔接。
(5)速算也是计算,是将硬算化为巧算。
(6)能提高计算的速度及能力,并能培养严谨细致、灵活巧妙的工作习惯。