导航:首页 > 源码编译 > 所有的递归算法

所有的递归算法

发布时间:2022-08-03 22:12:49

1. C语言递归算法

本人学c++,c的语法已经淡忘了,但是递归不管什么语言都是一个原理
其实简单一点来说就像数学里面的数列的通项公式:
例如一个数列是2,4,6,8,10......
很容易就可以得到通项公式是a[n]=2*n n是大于0的整数
你肯定学过这个数列的另外一种表示方式就是: a[1]=2, a[n]=a[n-1]+2 n是大于1的整数
其实这就是一个递归的形式,只要你知道初始项的值,未知项和前几项之间的关系就可以知道整个数列。
程序例子:比如你要得到第x项的值
普通循环:
for(int i=1; i<=n; i++)
if (i == x)
cout << 2*i; /*cout 相当于 c里面的printf,就是输出.*/
递归:
int a(int x) {
if (x = 1)
return 2; /* 第一项那肯定是2了,这个也是递归的终止条件! */
else return a(x-1)+2; /* 函数自身调用自身是递归的一个特色 */
比如x=4,那么用数学表示就是a(4)=a(3)+2=(a(2)+2)+2=((a(1)+2)+2)+2
其实递归方法最接近自然,也是最好思考的一个方法,难点就是把对象建模成递归形式,但是好多问题本身就是以递归形式出现的。
普通递归就是数据结构上的堆栈,先进后出。
例如上面x=4,把a(4)放入栈底,然后放入a(3),然后a(2),a(1),a(1)的值已知,出栈,a(1)=2,a(2)出栈a(2)=a(1)+2=2+2=4,a(3)出栈a(3)=a(2)+2=(a(1)+2)+2=6,a(4)出栈a(4)=a(3)+2=(a(2)+2)+2=((a(1)+2)+2)+2=8
再比如楼上的阶乘例子,当n=0 或 1时,0!=1,1!=1,这个是阶乘的初始值,也是递归的终止条件。然后我们知道n!=n*(n-1)!,当n>1时,这样我们又有了递归形式,又可以以递归算法设计程序了。(楼上已给出谭老的程序,我就不写了)。
我给出一种优化的递归算法---尾递归。
从我给出的第一算法可以看出,先进栈再出栈,递归的效率是很低的。速度上完全比不上迭代(循环)。但是尾递归引入了一个新的函数参数,用这个新的函数参数来记录中间值.
普通递归阶乘fac(x),就1个x而已,尾递归用2个参数fac(x,y),y存放阶乘值。
所以谭老的程序就变成
// zysable's tail recursive algorithm of factorial.
int fac(int x, int y) {
if (x == 1)
return y;
else return fac(x-1, y*x);}
int ff(int x) {
if (x == 0)
return 1;
else return fac(x,1);}
对于这个程序我们先看函数ff,函数ff其实是对fac的一个封装函数,纯粹是为了输入方便设计的,通过调用ff(x)来调用fac(x,1),这里常数1就是当x=1的时候阶乘值了,我通过走一遍当x=3时的值即为3!来说明一下。
首先ff(3),x!=0,执行fac(3,1).第一次调用fac,x=3,y=1,x!=1,调用fac(x-1,y*x),新的x=2,y=3*1=3,这里可以看到,y已经累计了一次阶乘值了,然后x还是!=1,继续第三次调用fac(x-1,y*x),新的x=1,y=2*3=6,然后x=1了,返回y的值是6,也就是3!.你会发现这个递归更类似于迭代了。事实上我们用了y记录了普通递归时候,出栈的乘积,所以减少了出栈后的步骤,而且现在世界上很多程序员都在倡议用尾递归取消循环,因为有些在很多解释器上尾递归比迭代稍微效率一点.
基本所有普通递归的问题都可以用尾递归来解决。
一个问题以递归来解决重要的是你能抽象出问题的递归公式,只要递归公式有了,你就可以放心大胆的在程序中使用,另外一个重点就是递归的终止条件;
其实这个终止条件也是包含在递归公式里面的,就是初始值的定义。英文叫define initial value. 用普通递归的时候不要刻意让自己去人工追踪程序,查看运行过程,有些时候你会发现你越看越不明白,只要递归公式转化成程序语言正确了,结果必然是正确的。学递归的初学者总是想用追踪程序运行来让自己来了解递归,结果越弄越糊涂。
如果想很清楚的了解递归,有种计算机语言叫scheme,完全递归的语言,因为没有循环语句和赋值语句。但是国内人知道的很少,大部分知道是的lisp。
好了,就给你说到这里了,希望你能学好递归。

PS:递归不要滥用,否则程序极其无效率,要用也用尾递归。by 一名在美国的中国程序员zysable。

2. 什么是递归算法

递归算法就是一个函数通过不断对自己的调用而求得最终结果的一种思维巧妙但是开销很大的算法。
比如:
汉诺塔的递归算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}

void hanoi(int n,char one,char two,char three){
/*将n个盘从one座借助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}

main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我说下递归的理解方法
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,mian函数里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n>=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。

3. java递归算法的例子。

阶乘:

要求:给定一个数值,计算出它的阶乘值,例如5的阶乘为5*4*3*2*1

实现:

[html] view plain

<span style="font-size:12px;"> // 利用递归实现一个数的阶乘值 private static BigDecimal getNum(BigDecimal inNum) { if (inNum.compareTo(BigDecimal.ONE) == 0) { return inNum; } return inNum.multiply(getNum(inNum.subtract(BigDecimal.ONE))); }</span>

(2)Fibonacci数列:1,1,2,3,5,8,13……

要求:找出数列中指定index位置的数值

实现:

[html] view plain

<span style="font-size:12px;"> // 利用递归实现了Fibonacci数列 private static int fab(int index) { if (index == 1 || index == 2) { return 1; } else { return fab(index - 1) + fab(index - 2); } }</span>

(3)汉诺塔

要求:汉诺塔挪动

实现:

[html] view plain

<span style="font-size:12px;"> <span style="white-space:pre;"> </span>private static final String DISK_B = "diskB"; <span style="white-space:pre;"> </span>private static final String DISK_C = "diskC"; <span style="white-space:pre;"> </span>private static final String DISK_A = "diskA"; <span style="white-space:pre;"> </span>static String from=DISK_A; <span style="white-space:pre;"> </span> static String to=DISK_C; <span style="white-space:pre;"> </span> static String mid=DISK_B; <span style="white-space:pre;"> </span> public static void main(String[] args) { <span style="white-space:pre;"> </span> String input=JOptionPane.showInputDialog("please input the number of the disks you want me move."); <span style="white-space:pre;"> </span> int num=Integer.parseInt(input); <span style="white-space:pre;"> </span> move(num,from,mid,to); <span style="white-space:pre;"> </span> }</span>

[html] view plain

<span style="font-size:12px;"> // 利用递归实现汉诺塔 private static void move(int num, String from2, String mid2, String to2) { if (num == 1) { System.out.println("move disk 1 from " + from2 + " to " + to2); } else { move(num - 1, from2, to2, mid2); System.out.println("move disk " + num + " from " + from2 + " to " + to2); move(num - 1, mid2, from2, to2); } }</span>

(4)排列组合

要求:将输入的一个字符串中的所有元素进行排序并输出,例如:你给出的参数是"abc",

则程序会输出

abc

acb

bac

bca

cab

cba

实现:

[html] view plain

<span style="font-size:12px;"><span style="white-space:pre;"> </span>public static void permute(String str) { <span style="white-space:pre;"> </span> char[] strArray = str.toCharArray(); <span style="white-space:pre;"> </span> permute(strArray, 0, strArray.length - 1); <span style="white-space:pre;"> </span>}</span>

[html] view plain

<span style="font-size:12px;"> // 利用递归实现,将输入的一个字符串中的所有元素进行排序并输出 public static void permute(char[] list, int low, int high) { int i; if (low == high) { String cout = ""; for (i = 0; i <= high; i++) { cout += list[i]; } System.out.println(cout); } else { for (i = low; i <= high; i++) { char temp = list[low]; list[low] = list[i]; list[i] = temp; permute(list, low + 1, high); temp = list[low];

4. 递归算法是什么

递归算法(英语:recursion algorithm)在计算机科学中是指一种通过重复将问题分解为同类的子问题而解决问题的方法。

递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。

计算理论可以证明递归的作用可以完全取代循环,因此在很多函数编程语言(如Scheme)中习惯用递归来实现循环。

5. 一个递归算法必须包括什么

递归算法包含的两个部分:

1、由其自身定义的与原始问题类似的更小规模的子问题(只有数据规模不同),它使递归过程持续进行,称为一般条件。

2、所描述问题的最简单的情况,它是一个能控制递归过程结束的条件,称为基本条件。(递归出口)

递归的定义:

如果一个对象部分地由它自身组成或按它自己定义,则称它是递归的,所以说递归就是函数/过程/子过程在运行过程中直接或间接调用自身而产生的重入现象。

递归的基本思想:

就是把一个规模大的问题分为若干个规模较小的子问题求解,而每一个子问题又可以分为几个规模更小的子问题。基本上,所有的递归问题都可以用递推公式来表示。

最重要的一点就是假设子问题已经解决了,现在要基于已经解决的子问题来解决当前问题;或者说,必须先解决子问题,再基于子问题来解决当前问题或者可以这么理解:递归解决的是有依赖顺序关系的多个问题。

递归的优缺点:

优点:逻辑清楚,结构清晰,可读性好,代码简洁,效率高(拓展:DFS深度优先搜素,前中后序二叉树遍历)

缺点:函数调用开销大,空间复杂度高,有堆栈溢出的风险

6. 谁有递归算法

汉诺塔的递归算法:
void move(char x,char y){
printf("%c-->%c\n",x,y);
}

void hanoi(int n,char one,char two,char three){
/*将n个盘从one座借助two座,移到three座*/
if(n==1) move(one,three);
else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}

main(){
int n;
printf("input the number of diskes:");
scanf("%d",&n);
printf("The step to moving %3d diskes:\n",n);
hanoi(n,'A','B','C');
}
我说下递归的理解方法
首先:对于递归这一类函数,你不要纠结于他是干什么的,只要知道他的一个模糊功能是什么就行,等于把他想象成一个能实现某项功能的黑盒子,而不去管它的内部操作先,好,我们来看下汉诺塔是怎么样解决的
首先按我上面说的把递归函数想象成某个功能的黑盒子,void hanoi(int n,char one,char two,char three); 这个递归函数的功能是:能将n个由小到大放置的小长方形从one 位置,经过two位置 移动到three位置。那么你的主程序要解决的问题是要将m个的"汉诺块"由A借助B移动到C,根据我们上面说的汉诺塔的功能,我相信傻子也知道在主函数中写道:hanoi(m,A,B,C)就能实现将m个块由A借助B码放到C,对吧?所以,mian函数里面有hanoi(m,'A','C','B');这个调用。
接下来我们看看要实现hannoi的这个功能,hannoi函数应该干些什么?
在hannoi函数里有这么三行
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
同样以黑盒子的思想看待他,要想把n个块由A经过B搬到C去,是不是可以分为上面三步呢?
这三部是:第一步将除了最后最长的那一块以外的n-1块由one位置经由three搬到two 也就是从A由C搬到B 然后把最下面最长那一块用move函数把他从A直接搬到C 完事后 第三步再次将刚刚的n-1块借助hannoi函数的功能从B由A搬回到C 这样的三步实习了n块由A经过B到C这样一个功能,同样你不用纠结于hanoi函数到底如何实现这个功能的,只要知道他有这么一个神奇的功能就行
最后:递归都有收尾的时候对吧,收尾就是当只有一块的时候汉诺塔怎么个玩法呢?很简单吧,直接把那一块有Amove到C我们就完成了,所以hanoni这个函数最后还要加上 if(n==1)move(one,three);(当只有一块时,直接有Amove到C位置就行)这么一个条件就能实现hanoin函数n>=1时将n个块由A经由B搬到C的完整功能了。
递归这个复杂的思想就是这样简单解决的,呵呵 不知道你看懂没?纯手打,希望能帮你理解递归
总结起来就是不要管递归的具体实现细节步骤,只要知道他的功能是什么,然后利用他自己的功能通过调用他自己去解决自己的功能(好绕口啊,日)最后加上一个极限情况的条件即可,比如上面说的1个的情况。

7. java中递归算法是什么怎么算的

一、递归算法基本思路:

Java递归算法是基于Java语言实现的递归算法。递归算法是一种直接或者间接调用自身函数或者方法的算法。递归算法实质是把问题分解成规模缩小的同类问题的子问题,然后递归调用方法表示问题的解。递归往往能给我们带来非常简洁非常直观的代码形式,从而使我们的编码大大简化,然而递归的思维确实跟我们的常规思维相逆的,通常都是从上而下的思维问题,而递归趋势从下往上的进行思维。

二、递归算法解决问题的特点:

【1】递归就是方法里调用自身。

【2】在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

【3】递归算法代码显得很简洁,但递归算法解题的运行效率较低。所以不提倡用递归设计程序。

【4】在递归调用的过程中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等,所以一般不提倡用递归算法设计程序。

【5】在做递归算法的时候,一定把握出口,也就是做递归算法必须要有一个明确的递归结束条件。这一点是非常重要的。其实这个出口就是一个条件,当满足了这个条件的时候我们就不再递归了。

三、代码示例:

publicclassFactorial{

//thisisarecursivefunction

intfact(intn){

if(n==1)return1;

returnfact(n-1)*n;

}}
publicclassTestFactorial{publicstaticvoidmain(String[]args){

//TODOAuto-generatedmethodstub

Factorialfactorial=newFactorial();

System.out.println("factorial(5)="+factorial.fact(5));

}
}

代码执行流程图如下:

此程序中n=5就是程序的出口。

8. 递归算法

递归算法
递归算法流程
递归过程一般通过函数或子过程来实现。递归算法:在函数或子过程的内部,直接或者间接地调用自己的算法。
递归算法的特点
递归算法是一种直接或者间接地调用自身的算法。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。 递归算法解决问题的特点: (1) 递归就是在过程或函数里调用自身。 (2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。 (3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。 (4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。
递归算法要求
递归算法所体现的“重复”一般有三个要求: 一是每次调用在规模上都有所缩小(通常是减半); 二是相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入); 三是在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。
举例
描述:把一个整数按n(2<=n<=20)进制表示出来,并保存在给定字符串中。比如121用二进制表示得到结果为:“1111001”。 参数说明:s: 保存转换后得到的结果。 n: 待转换的整数。 b: n进制(2<=n<=20) void numbconv(char *s, int n, int b) { int len; if(n == 0) { strcpy(s, ""); return; } /* figure out first n-1 digits */ numbconv(s, n/b, b); /* add last digit */ len = strlen(s); s[len] = ""[n%b]; s[len+1] = '\0'; } void main(void) { char s[20]; int i, base; FILE *fin, *fout; fin = fopen("palsquare.in", "r"); fout = fopen("palsquare.out", "w"); assert(fin != NULL && fout != NULL); fscanf(fin, "%d", &base); /*PLS set START and END*/ for(i=START; i <= END; i++) { numbconv(s, i*i, base); fprintf(fout, "%s\n", s); } exit(0); }
编辑本段递归算法简析(PASCAL语言)
递归是计算机科学的一个重要概念,递归的方法是程序设计中有效的方法,采用递归编写 程序能是程序变得简洁和清晰.
一 递归的概念
1.概念 一个过程(或函数)直接或间接调用自己本身,这种过程(或函数)叫递归过程(或函数). 如: procere a; begin . . . a; . . . end; 这种方式是直接调用. 又如: procere c(形参);forward; procere b; 局部说明 begin . . c(实参); . . end; procere c; 局部说明; begin . . b; . . end; 这种方式是间接调用. 例1计算n!可用递归公式如下: fac:=n*fac(n-1) {当n>0时} fac(n)={ fac:=1; { 当n=0时} 可编写程序如下: program facn; var n:integer; function fac(n:integer):real; begin if n=0 then fac:=1 else fac:=n*fac(n-1); end; begin write('n=');readln(n); writeln(n,'!=',fac(n):0:0); end. 例2 楼梯有n阶台阶,上楼可以一步上1阶,也可以一步上2阶,编一程序计算共有多少种不同的走法. 设n阶台阶的走法数为f(n) 显然有 n=1 f(n)={ f(n-1)+f(n-2) n>2 可编程序如下: program louti; var n:integer; function f(x:integer):integer; begin if x=1 then f:=1 else if x=2 then f:=2 else f:=f(x-1)+f(x-2); end; begin write('n=');read(n); writeln('f(',n,')=',f(n)) end.
二 如何设计递归算法
1.确定递归公式 2.确定边界(终了)条件
三 典型例题
例3 汉诺塔问题 如图:已知有三根针分别用1,2,3表示,在一号针中从小放n个盘子,现要求把所有的盘子 从1针全部移到3针,移动规则是:使用2针作为过度针,每次只移动一块盘子,且每根针上 不能出现大盘压小盘.找出移动次数最小的方案. 程序如下: program hanoi; var n:integer; procere move(n,a,b,c:integer); begin if n=1 then writeln(a,'->',c) else begin move(n-1,a,c,b); writeln(a,'--->',c); move(n-1,b,a,c); end; end; begin write('Enter n='); read(n); move(n,1,2,3); end. 例4 快速排序 快速排序的思想是:先从数据序列中选一个元素,并将序列中所有比该元素小的元素都放到它的右边或左边,再对左右两边分别用同样的方法处之直到每一个待处理的序列的长度为1, 处理结束. 程序如下: program kspv; const n=7; type arr=array[1..n] of integer; var a:arr; i:integer; procere quicksort(var b:arr; s,t:integer); var i,j,x,t1:integer; begin i:=s;j:=t;x:=b ; repeat while (b[j]>=x) and (j>i) do j:=j-1; if j>i then begin t1:=b; b:=b[j];b[j]:=t1;end; while (b<=x) and (i<j) do i:=i+1; if i<j then begin t1:=b[j];b[j]:=b;b:=t1; end until i=j; b:=x; i:=i+1;j:=j-1; if s<j then quicksort(b,s,j); if i<t then quicksort(b,i,t); end; begin write('input data:'); for i:=1 to n do read(a); writeln; quicksort(a,1,n); write('output data:'); for i:=1 to n do write(a:6); writeln; end.
编辑本段{递归的一般模式}
procere aaa(k:integer); begin if k=1 then (边界条件及必要操作) else begin aaa(k-1); (重复的操作); end; end;
开放分类:
编程,计算机,算法

引自:http://ke..com/view/1733593.htm

9. 递归的概念

​是指函数/过程/子程序在运行过程序中直接或间接调用自身而产生的重入现象。

在计算机编程里,递归指的是一个过程:函数不断引用自身,直到引用的对象已知。

使用递归解决问题,思路清晰,代码少。但是在主流高级语言中(如C语言、Pascal语言等)使用递归算法要耗用更多的栈空间,所以在堆栈尺寸受限制时(如嵌入式系统或者内核态编程),应避免采用。所有的递归算法都可以改写成与之等价的非递归算法。

汉诺塔问题,是常见可用递归解决的问题,不过也有非递归的解法。

菲波纳契数列可用递归定义。

以下为求汉诺塔问题的Pascal程序:

procere Hanoi(n:integer;x,y,z:char);

递归
begin

if n<>1 then begin

Hanoi(n-1,x,z,y);

writeln(x,n,z);

Hanoi(n-1,y,x,z);

else writeln(x,n,z);

end;

end;

上述程序用接近自然语言的伪代码可表述如下:

Hanoi 过程 (整型参数n; 字符型参数 x,y,z);

//注:n 代表本步中要处理的盘子数,x,y,z 分别表示 n 号盘子原来所在柱子、经由柱子、目标柱子

开始

如果 n 不为 1 ,那么:开始

调用 Hanoi 过程 (参数为 n-1,x,z,y);

//注:这一步表示用本过程方法将剩余 n-1 个盘子从柱子 x 经由柱子 z 移动到柱子 y

输出 x,n,z; //注:表示将 n 号盘子从 x 移动到 z

调用 Hanoi 过程 (参数为 n-1,y,x,z);

//注:这一步表示用本过程方法将剩余 n-1 个盘子从柱子 y 经由柱子 x 移动到柱子 z

结束; //以上程序段就完成了把 n 个盘子从柱子 x 经由柱子 y 移动到柱子 z

否则 输出 x,n,z; //注:若 n 为1 的话本句直接输出表示将 n 号盘子从 x 移动到 z
递归,就是在运行的过程中调用自己。

构成递归需具备的条件:

函数嵌套调用过程示例

1. 子问题须与原始问题为同样的事,且更为简单;

2. 不能无限制地调用本身,须有个出口,化简为非递归状况处理。

在数学和计算机科学中,递归指由一种(或多种)简单的基本情况定义的一类对象或方法,并规定其他所有情况都能被还原为其基本情况。

10. 有关二叉树递归的算法

靠,缩进全被网络搞乱了,自己排版

#include <iostream>
using namespace std;
//二叉树节点
struct BiTreeNode{
int data;
BiTreeNode *left;
BiTreeNode *right;
};
//写一个类,方便二叉树的建立和删除
class BiTree{
private:
void deleteAllNode(BiTreeNode *root);
public:
BiTreeNode *root;
BiTree();
~BiTree();
void CreateTree();
void deleteLeaves(BiTreeNode *root);
bool DepthOfTheNode(BiTreeNode *currentNode,BiTreeNode *p, int depthOfFather);
void FindMaxValue(BiTreeNode *currentNode, int *maxValue);
void ExchangeLeftAndRight(BiTreeNode *currentNode);
void OutputValueAndDepthByQIANXU(BiTreeNode *currentNode, int depthOfFather); //不好意思,用了拼音
};
BiTree::BiTree()
{
root = NULL;
}
BiTree::~BiTree()
{
deleteAllNode(root);
}
void BiTree::deleteAllNode(BiTreeNode *root)
{
if (root == NULL) return;
deleteAllNode(root->left);
deleteAllNode(root->right);
cout << root->data << ' '; //用来查看当前节点是不是被删除。
delete root;
}
//手动建立一个二叉树用于测试
// 1
// / \
// 2 3
// \ /
// 4 5
void BiTree::CreateTree()
{
if (root) return;
root = new BiTreeNode;
root->data = 1;
root->left = new BiTreeNode;
root->left->data = 2;
root->right = new BiTreeNode;
root->right->data = 3;
BiTreeNode *p;
p = root->left;
p->left = NULL;
p->right = new BiTreeNode;
p->right->data = 4;
p->right->left = p->right->right = NULL;
p= root->right;
p->left = new BiTreeNode;
p->left->data = 5;
p->left->left = p->left->right = NULL;
p->right = NULL;
}
//用递归算法删除叶子
void BiTree::deleteLeaves(BiTreeNode *root)
{
if (root == NULL) return;
if (!root->left && !root->right) return; //表示是根节点(或者出错,跑到叶子节点了,这种情况应该不会),不删除

if (root->left) //当前节点有左子树
{
if (root->left->left || root->left->right) //左子树不是叶子
deleteLeaves(root->left);
else //当前节点的左子节点是叶子
{
delete root->left;
root->left = NULL;
}
}
if (root->right)
{
if (root->right->left || root->right->right)
deleteLeaves(root->right);
else //当前节点的右子节点是叶子
{
delete root->right;
root->right = NULL;
}
}
}
int depth = 0; //一个用来存储深度的全局变量,虽然在实际编程中这样用不好
//但一切为了方便。
//节点p的深度,递归法
bool BiTree::DepthOfTheNode(BiTreeNode *currentNode,BiTreeNode *p, int depthOfFather)
{
if (currentNode == NULL) return false;
if (currentNode == p) //当前节点为要找的节点
{
depth = depthOfFather + 1;
return true;;
}
if (DepthOfTheNode(currentNode->left, p, depthOfFather+1)) //找当前节点的左子树
return true;
else
return DepthOfTheNode(currentNode->right, p, depthOfFather+1);
}
//用递归找最大值,最大值存储在maxValue所指的内存 ,这里使用前序遍历
void BiTree::FindMaxValue(BiTreeNode *currentNode, int *maxValue)
{
if (currentNode == NULL) return;
*maxValue = *maxValue > currentNode->data ? *maxValue : currentNode->data;
FindMaxValue(currentNode->left, maxValue); //遍历左子树
FindMaxValue(currentNode->right, maxValue);
}
//交换左右,用前序遍历
void BiTree::ExchangeLeftAndRight(BiTreeNode *currentNode)
{
if (currentNode == NULL) return;
BiTreeNode *temp;
temp = currentNode->left;
currentNode->left = currentNode->right;
currentNode->right = temp;
ExchangeLeftAndRight(currentNode->left);
ExchangeLeftAndRight(currentNode->right);
}
//以前序次序输出一棵二叉树所有结点的数据值及结点所在层次
void BiTree::OutputValueAndDepthByQIANXU(BiTreeNode *currentNode, int depthOfFather)
{
if (currentNode == NULL) return;
cout << "节点:" << currentNode->data;
cout << "\t深度:" << depthOfFather+1 << endl;
OutputValueAndDepthByQIANXU(currentNode->left, depthOfFather+1);
OutputValueAndDepthByQIANXU(currentNode->right, depthOfFather+1);
}
int main()
{
BiTree bt;
bt.CreateTree();
//求p的深度
bt.DepthOfTheNode(bt.root, bt.root->left->right, 0);
cout << "深度:" << depth << endl;
//找最大值
int maxValue;
bt.FindMaxValue(bt.root, &maxValue);
cout << "最大值为:" << maxValue << endl;
//交换左右节点
bt.ExchangeLeftAndRight(bt.root);
//以前序次序输出一棵二叉树所有结点的数据值及结点所在层次
bt.OutputValueAndDepthByQIANXU(bt.root, 0);
//删除叶子节点
bt.deleteLeaves(bt.root);
return 0;
}

阅读全文

与所有的递归算法相关的资料

热点内容
python处理excel乱码 浏览:391
mysql的命令行 浏览:822
jpeg采用什么算法 浏览:700
程序员红轴薄膜 浏览:306
洗脸盆压缩 浏览:780
dpd是什么算法 浏览:156
加密技术中的密钥 浏览:962
qq企业邮箱本地客户端服务器地址 浏览:751
排序算法框架 浏览:852
马扎克qtn编程说明书下载 浏览:188
程序员在国外年龄 浏览:376
51单片机ad数码管 浏览:738
安卓怎么强制重新启动 浏览:514
自制超级无敌解压软件 浏览:956
ug命令视频大全 浏览:612
箱子装货物最小容量编程 浏览:99
cad2014教程pdf 浏览:200
怎么遍历服务器同一类型的文件 浏览:437
惠普战66画图编程 浏览:806
java面向对象作业 浏览:570