‘壹’ 将rgb图像转为hsi之后,怎么对色调H画出颜色直方图
TIFF是一种比较灵活的图像格式,它的全称是Tagged Image File Format,文件扩展名为TIF或TIFF。该格式支持256色、24位真彩色、32位色、48位色等多种色彩位,同时支持RGB、CMYK以及YCbCr等多种色彩模式,支持多平台。TIFF文件可以是不压缩的,文件体积较大,也可以是压缩的,支持RAW、RLE、LZW、JPEG、 CCITT3组和4组等多种压缩方式。 GIF GIF(Graphics Interchange Format)的原义是“图像互换格式”,是CompuServe公司在 1987年开发的图像文件格式。GIF文件的数据,是一种基于LZW算法的连续色调的无损压缩格式。其压缩率一般在50%左右,它不属于任何应用程序。目前几乎所有相关软件都支持它,公共领域有大量的软件在使用GIF图像文件。GIF图像文件的数据是经过压缩的,而且是采用了可变长度等压缩算法。所以GIF的图像深度从lbit到8bit,也即GIF最多支持256种色彩的图像。GIF格式的另一个特点是其在一个GIF文件中可以存多幅彩色图像,如果把存于一个文件中的多幅图像数据逐幅读出并显示到屏幕上,就可构成一种最简单的动画。 GIF分为静态GIF和动画GIF两种,支持透明背景图像,适用于多种操作系统,“体型”很小,网上很多小动画都是GIF格式。其实GIF是将多幅图像保存为一个图像文件,从而形成动画,所以归根到底GIF仍然是图片文件格式。 jpg jpg全名应该是JPEG JPEG 图片以 24 位颜色存储单个光栅图像。JPEG 是与平台无关的格式,支持最高级别的压缩,不过,这种压缩是有损耗的。渐近式 JPEG 文件支持交错。 可以提高或降低 JPEG 文件压缩的级别。但是,文件大小是以图像质量为代价的。压缩比率可以高达 100:1。(JPEG 格式可在 10:1 到 20:1 的比率下轻松地压缩文件,而图片质量不会下降。)JPEG 压缩可以很好地处理写实摄影作品。但是,对于颜色较少、对比级别强烈、实心边框或纯色区域大的较简单的作品,JPEG 压缩无法提供理想的结果。有时,压缩比率会低到 5:1,严重损失了图片完整性。这一损失产生的原因是,JPEG 压缩方案可以很好地压缩类似的色调,但是 JPEG 压缩方案不能很好地处理亮度的强烈差异或处理纯色区域。 优点:摄影作品或写实作品支持高级压缩。 利用可变的压缩比可以控制文件大小。 支持交错(对于渐近式 JPEG 文件)。 广泛支持 Internet 标准。 缺点: 有损耗压缩会使原始图片数据质量下降。 当您编辑和重新保存 JPEG 文件时,JPEG 会混合原始图片数据的质量下降。这种下降是累积性的。 JPEG 不适用于所含颜色很少、具有大块颜色相近的区域或亮度差异十分明显的较简单的图片。 jpg格式是一种图片格式,使一种比较常见的图画格式,如果你的图片是其他格式的话,你可以通过以下方法转化: 1、photoshop ,打开图画以后,按另存为,下面格式那里选择JPG格式就是了,这个方法比较简单,而且适合画质比较好的,要求比较高的图片转换。 2、如果你要求不高,你直接通过windows附带的图画程序,选择JPG格式就行了,这个来转换的话,画质嘛,马马虎虎,不过在网上嘛,过得去了! 如果JPG格式转其他格式,这样的方法同样适用。 JPEG (Joint Photographic Experts GROUP)是由国际标准组织(ISO:International Standardization Organization)和国际电话电报咨询委员会(CCITT:Consultation Commitee of the International Telephone and Telegraph)为静态图象所建立的第一个国际数字图象压缩标准,也是至今一直在使用的、应用最广的图像压缩标准。JPEG由于可以提供有损压缩,因此压缩比可以达到其他传统压缩算法无法比拟的程度。 JPEG的压缩模式有以下几种: 顺序式编码(Sequential Encoding) 一次将图象由左到右、由上到下顺序处理。 递增式编码(Progressive Encoding) 当图象传输的时间较长时,可将图象分数次处理,以从模糊到清晰的方式来传送图象(效果类似GIF在网络上的传输)。 无失真编码(Lossless Encoding) 阶梯式编码(Hierarchical Encoding) 图象以数种分辨率来压缩,其目的是为了让具有高分辨率的图象也可以在较低分辨率的设备上显示。 由于JPEG的无损压缩方式并不比其他的压缩方法更优秀,因此我们着重来看它的有损压缩。以一幅24位彩色图象为例,JPEG的压缩步骤分为: 1.颜色转换 2.DCT变换 3.量化 4.编码 1.颜色转换 由于JPEG只支持YUV颜色模式的数据结构,而不支持RGB图象数据结构,所以在将彩色图象进行压缩之前,必须先对颜色模式进行数据转换。各个值的转换可以通过下面的转换公式计算得出: Y=0.299R+0.587G+0.114B U=-0.169R-0.3313G+0.5B V=0.5R-0.4187G-0.0813B 其中,Y表示亮度,U和V表示颜色。 转换完成之后还需要进行数据采样。一般采用的采样比例是2:1:1或4:2:2。由于在执行了此项工作之后,每两行数据只保留一行,因此,采样后图象数据量将压缩为原来的一半。 2.DCT变换 DCT(Discrete Consine Transform)是将图象信号在频率域上进行变换,分离出高频和低频信息的处理过程。然后再对图象的高频部分(即图象细节)进行压缩,以达到压缩图象数据的目的。 首先将图象划分为多个8*8的矩阵。然后对每一个矩阵作DCT变换(变换公式此略)。变换后得到一个频率系数矩阵,其中的频率系数都是浮点数。 3.量化 由于在后面编码过程中使用的码本都是整数,因此需要对变换后的频率系数进行量化,将之转换为整数。 由于进行数据量化后,矩阵中的数据都是近似值,和原始图象数据之间有了差异,这一差异是造成图象压缩后失真的主要原因。 在这一过程中,质量因子的选取至为重要。值选得过大,可以大幅度提高压缩比,但是图象质量就比较差;反之,质量因子越小(最小为1),图象重建质量越好,但是压缩比越低。对此,ISO已经制定了一组供JPEG代码实现者使用的标准量化值。 4.编码 从前面过程我们可以看到,颜色转换完成到编码之前,图象并没有得到进一步的压缩,DCT变换和量化可以说是为编码阶段做准备。 编码采用两种机制:一是0值的行程长度编码;二是熵编码(Entropy Coding)。 在JPEG中,采用曲徊序列,即以矩阵对角线的法线方向作“之”字排列矩阵中的元素。这样做的优点是使得靠近矩阵左上角、值比较大的元素排列在行程的前面,而行程的后面所排列的矩阵元素基本上为0值。行程长度编码是非常简单和常用的编码方式,在此不再赘述。 编码实际上是一种基于统计特性的编码方法。在JPEG中允许采用HUFFMAN编码或者算术编码。
‘贰’ 使用MATLAB计算RGB数据的颜色直方图
I=imread('sample.bmp'); % 文件名自己改
siz=size(I);
I1=reshape(I,siz(1)*siz(2),siz(3)); % 每个颜色通道变为一列
I1=double(I1);
[N,X]=hist(I1, [0:1:255]); % 如果需要小矩形宽一点,划分区域少点,可以把步长改大,比如0:5:255
bar(X,N(:,[3 2 1])); % 柱形图,用N(:,[3 2 1])是因为默认绘图的时候采用的颜色顺序为b,g,r,c,m,y,k,跟图片的rgb顺序正好相反,所以把图片列的顺序倒过来,让图片颜色通道跟绘制时的颜色一致
xlim([0 255])
hold on
plot(X,N(:,[3 2 1])); % 上边界轮廓
hold off
‘叁’ 对一张图片进行特征提取的具体算法和程序。越具体越好。感谢,例如算出图像的形状长宽高之类的。
对一张图片进行特征提取的具体算法和程序,越具体越好,感谢例如算出图像的形状,长宽之类的,我觉得对图片特征提取的体术法并没有什么具体算法,因为每个相机照出来的图片,它的放大缩小都是不一样的,不可能从一个图片算出一个图像的长宽高,只能够算出一个大概的长宽高,如果要算出非常准确的茶膏,只能用一些红外测距仪,还有某些特定的仪器才能构测量出,一些建筑物的长宽高不能够从一个图片上面去算出一个建筑物的长宽高的是根本没法算出来的。
‘肆’ camshift算法可以和什么结合
camshift利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。
分为三个部分:
1--色彩投影图(反向投影):
(1).RGB颜色空间对光照亮度变化较为敏感,为了减少此变化对跟踪效果的影响,首先将图像从RGB空间转换到HSV空间。(2).然后对其中的H分量作直方图,在直方图中代表了不同H分量值出现的概率或者像素个数,就是说可以查找出H分量大小为h的概率或者像素个数,即得到了颜色概率查找表。(3).将图像中每个像素的值用其颜色出现的概率对替换,就得到了颜色概率分布图。这个过程就叫反向投影,颜色概率分布图是一个灰度图像。
2--meanshift
meanshift算法是一种密度函数梯度估计的非参数方法,通过迭代寻优找到概率分布的极值来定位目标。
算法过程为:
(1).在颜色概率分布图中选取搜索窗W
(2).计算零阶距:
计算一阶距:
计算搜索窗的质心:
(3).调整搜索窗大小
宽度为;长度为1.2s;
(4).移动搜索窗的中心到质心,如果移动距离大于预设的固定阈值,则重复2)3)4),直到搜索窗的中心与质心间的移动距离小于预设的固定阈值,或者循环运算的次数达到某一最大值,停止计算。关于meanshift的收敛性证明可以google相关文献。
3--camshift
将meanshift算法扩展到连续图像序列,就是camshift算法。它将的所有帧做meanshift运算,并将上一帧的结果,即搜索窗的大小和中心,作为下一帧meanshift算法搜索窗的初始值。如此迭代下去,就可以实现对目标的跟踪。
算法过程为:
(1).初始化搜索窗
(2).计算搜索窗的颜色概率分布(反向投影)
(3).运行meanshift算法,获得搜索窗新的大小和位置。
(4).在下一帧图像中用(3)中的值重新初始化搜索窗的大小和位置,再跳转到(2)继续进行。
‘伍’ 图像的特征提取都有哪些算法
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征
(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹配方法
(1) 颜色直方图
其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2) 颜色集
颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系
(3) 颜色矩
这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
(4) 颜色聚合向量
其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。
(5) 颜色相关图
二 纹理特征
(一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
(二)常用的特征提取与匹配方法
纹理特征描述方法分类
(1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数
(2)几何法
所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
(3)模型法
模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法
(4)信号处理法
纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。
灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。
三 形状特征
(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。另外,从 2-D 图像中表现的 3-D 物体实际上只是物体在空间某一平面的投影,从 2-D 图像中反映出来的形状常不是 3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。
(二)常用的特征提取与匹配方法
Ⅰ几种典型的形状特征描述方法
通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
几种典型的形状特征描述方法:
(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
(2)傅里叶形状描述符法
傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
(3)几何参数法
形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。
(4)形状不变矩法
利用目标所占区域的矩作为形状描述参数。
(5)其它方法
近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或 FEM)、旋转函数(Turning Function)和小波描述符(Wavelet Descriptor)等方法。
Ⅱ 基于小波和相对矩的形状特征提取与匹配
该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的 7个不变矩,再转化为 10 个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。
四 空间关系特征
(一)特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。通常空间位置信息可以分为两类:相对空间位置信息和绝对空间位置信息。前一种关系强调的是目标之间的相对情况,如上下左右关系等,后一种关系强调的是目标之间的距离大小以及方位。显而易见,由绝对空间位置可推出相对空间位置,但表达相对空间位置信息常比较简单。
空间关系特征的使用可加强对图像内容的描述区分能力,但空间关系特征常对图像或目标的旋转、反转、尺度变化等比较敏感。另外,实际应用中,仅仅利用空间信息往往是不够的,不能有效准确地表达场景信息。为了检索,除使用空间关系特征外,还需要其它特征来配合。
(二)常用的特征提取与匹配方法
提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。
‘陆’ 背景差分怎么和camshift结合
统颜色直方图的MeanShift(MS)算法只考虑了目标颜色的统计信息,不包含目标的 空间信息,当目标颜色与背景颜色相近时,容易导致不准确跟踪或跟踪丢失。针对该问题,提出了一种自适应空间颜色直方图的MeanShift跟踪算法。该算 法根据目标对象的最新外接矩形尺寸,确定对象分块方法,根据各块的Bhattacharyya系数值,确定各块的权重系数。其中,自适应分块的颜色直方图 包含了自适应分块方法和目标的空间信息;加权Bhattacharyya系数考虑到不同块对整体相似度
‘柒’ 三刺激值与灰度值的算法
简单说:三刺激值可通过下列测定而计算之:1.物体在可见光谱中正常间隔情况下的反射率(或透射率),并乘以这些量度;2.理论照度中同样波长的相应能量;3.同样波长的每一个的三色调(匹)配函数;4.每三套产物的总和,以这种方法得到的三刺激值叫重量纵坐标法。测定三刺激值的方法还有一种叫选择纵坐标法,即在特别选择的波长条件下测定反射(或透射)率的方法。如果被测定的有色物质的每个三刺激值被三个总和除,则每种原色在总刺激部分中所占的比例就极易得到,因为它们的总数为1,0000。两个系数就足可说明色性(Chromaticity)了。(所谓色性,就是指色相和纯度的综合量。一般以色性来叙述颜色时,是不考虑明度的,由色性图上的色性坐标表示之。这样就可将三度立体的空间投影简化成了平面上的点,大大地简化了颜色的计算与叙述)。这种比例数值就叫色性坐标(Chromaticity Coordinates),或色性系数(Chromaticity Coefficients),也叫三色系数(Trichromatic Coefficients)。显然,所谓色性系数,就是指某原色的刺激量在三种原色的总刺激量中所占的比例。颜色直方图图像检索方法是一种重要的基于颜色特征图像检索方法。在分析了基于颜色直方图信息熵进行图像检索方法的基础上,提出了一种通过灰度值对信息熵进行限定的遥感图像检索算法。该方法在一定程度上解决了传统的基于颜色直方图信息熵方法进行图像检索时,由于熵的对称特性造成图像误检索的不足。在实验精度评价中,分别采用直方图分析法和相关系数法,从定性与定量两个角度对检索精度进行了评价。实验结果显示,运用该方法进行检索,具有较高的检索精度,相关系数在0.95以上,在实际应用中具有良好的可
‘捌’ 直方图的特点是什么
1、显示质量波动的状态;
2、较直观地传递有关过程质量状况的信息;
3、通过研究质量波动状况之后,就能掌握过程的状况,从而确定在什么地方集中力量进行质量改进工作。
(8)颜色直方图算法扩展阅读:
图像直方图相关种类:
对于应用于图像分割的灰度直方图,现有的灰度直方图形状容易受到噪声干扰,构建在分割算法鲁棒性不足,迫切需要研究一种消除噪声干扰且适应能力强的灰度直方图图像分割方法;
对于应用于图像检索的颜色直方图,传统颜色直方图描述方法存在特征维数高、受光照影响、不能表达相近颜色间相关性及丢失空间位置信息的问题。
因此,需要研究综合考虑多种因素的颜色直方图法,现有的基于bag-of-words的方法在视觉词的构造、直方图的统计上仍然存在不足之处,使得最终得到的视觉词直方图不能很好的表达图像类别特征,因此需要研究新的基于bag-of-words的算法解决这些问题。
‘玖’ 在图像处理中有哪些算法
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。