❶ 数据分析师是干什么之R语言数据可视化详细介绍
什么是数据分析?
不知道题主是否区分数据分析与数据挖掘,前者偏向于业务分析,后者偏向于数据库算法。如果题主只是想问问什么是数据分析,大概谈一谈近年来的对数据分析的理解吧!
一句话概括下数据分析:借助数据来指导决策,而不是拍脑袋!传统行业的决策过多依赖于领导人得眼光和洞察力,而数据分析要做的事,就是把这些眼光和洞察力转化为人人可读的数字!
这里细分一下数据分析的框架:明确分析目标、数据收集、数据清理、数据分析、数据报告、执行与反馈。
1.首先是数据分析的目的性极强
区别于数据挖掘的找关联、分类、聚类,数据分析更倾向于解决现实中的问题。我想解决什么问题?通过这次的分析能让我产生什么决策?比如是否在某个高校举办一场活动,是否把我们的补贴政策再增加10元等等,数据分析的目的性极强。
2.数据收集
数据分析区别于数据挖掘的第一点就是数据来源。数据分析的数据可能来源于各种渠道,数据库、信息采集表、走访等等各种形式的数据,只要是和分析目标相关,都可以收集。而数据挖掘则偏向于数据库数据的读取。
3.数据清理
由于数据分析的数据来源相比于数据挖掘的直接从数据库调取,数据分析的数据更加杂乱无章,你可能是从别人的分析报告里找数据,从网络上搜索数据,这些数据的格式、字段都不统一,在这里你需要根据你的目的进行归类、整合。
4.数据分析
数据分析是全流程最重要的过程了!这里最重要的事情是:时刻想着你的目标是什么?比如了解某个时间段的交易状况,你要根据这个目标做同比、环比等等...这一块的方法极多,内容极大。由于题主只是想了解数据分析是什么,这里就不做过多的阐述。
5.数据报告
数据报告就是阐述你的结果嘛!你可以搞一堆大家看不懂的公式什么的证明你的专业性,但是这里需要你用最通俗易懂的语言告诉你的领导:做这件事有80%的概率收获100W。OK!就是这么简单!
6.执行与反馈
就是开始干活嘛!同时干完活后需要用数据监测是否达到既定目标?如果达到了,关键因素是什么?如果没达到,问题出在哪里?
❷ R语言是什么
R语言是什么?为什么要使用R语言?历数R的优势与缺点
R编程语言在数字分析与机器学习领域已经成为一款重要的工具。随着机器逐步成为愈发核心的数据生成器,该语言的人气也必然会一路攀升。不过R语言当然也拥有着自己的优势与缺点,开发人员只有加以了解后才能充分发挥它的强大能力。
正如Tiobe、PyPL以及Redmonk等编程语言人气排名所指出,R语言所受到的关注程度正在快速提升。作为一款诞生于上世纪九十年代的语言,R已经成为S统计编程语言的一类实现方式。已经拥有十八年R编程经验的高校教授兼Coursera在线平台培训师Roger Peng指出,“R语言已经成为统计领域最具人气的语言选项”。
“我之所以喜爱R语言,是因为它易于从计算机科学角度出发实现编程,”Peng表示。而R语言随时间推移正呈现出愈发迅猛的发展态势,并成为能够将不同数据集、工具乃至软件包结合在一起的胶水型语言,Peng解释道。
“R语言是创建可重复性及高质量分析的最佳途径。它拥有数据处理所必需的一切灵活性及强大要素,”在线编程教育机构Code School数据科学家Matt Adams指出。“我用R语言编写的大部分程序实际上都是在将各类脚本整理到项目当中。”
R语言拥有强大的软件包生态系统与图表优势
R语言的优势主要体现在其软件包生态系统上。“庞大的软件包生态系统无疑是R语言最为突出的优势之一——如果某项统计技术已经存在,那么几乎必然存在着一款R软件包与之对应,”Adams指出。
“其中内置有大量专门面向统计人员的实用功能,”Peng表示。R语言具备可扩展能力且拥有丰富的功能选项,帮助开发人员构建自己的工具及方法,从而顺利实现数据分析,他进一步解释称。“随着时间的推移,越来越多来自其它领域的用户也被吸引到了R身边来,”其中包括生物科学乃至人文学科等。
“人们能够在无需申请权限的前提下对其进行扩展。”事实上,Peng回忆称多年之前R的使用方式就已经给相关工作带来了巨大便利。“当R语言刚刚诞生之时,它最大的优势就是以自由软件的姿态出现。其源代码以及所有一切都可供我们直接查看。”
Adams也表示,R语言在图形及图表方面的一切能够都是“无与伦比”的。其dplyr与ggplot2软件包分别用于进行数据处理与绘图,且“能够非常直观地提升我的生活质量,”他感叹道。
在机器学习方面,R语言的优势则体现在与学术界的强大联动效应,Adams指出。“在这一领域的任何新型研究成果可能都会马上以R软件包的形式体现出来。因此从这个角度看,R语言始终站在技术发展的尖端位置,”他表示。“这种接入软件包还能够提供良好的途径,帮助我们利用相对统一的API在R语言环境下实现机器学习研究。”Peng进一步补充称,目前已经有众多主流机器学习算法以R语言作为实现手段。
R的短板在于安全性与内存管理
说了这么多优势,R语言当然也存在着一定不足。“内存管理、速度与效率可能是R语言面临的几大最为严峻的挑战,”Adams指出。“在这方面,人们仍然需要努力推动——而且也确实正在推动——其进展与完善。此外,从其它语言转投R怀抱的开发人员也会发现后者在某些设定上确实有些古怪。”
R语言的基本原理来自上世纪六十年代出现的各类编程语言,Peng解释道。“从这个意义上讲,R语言在设计思路上属于一项古老的技术成果。”这种语言的设计局限有时候会令大规模数据集处理工作遇到难题,他强调称。因为数据必须被保存在物理内存当中——但随着计算机内存容量的不断提升,这个问题已经在很大程度上得到了解决,Peng指出。
安全等相关功能并没有被内置在R语言当中,Peng指出。此外,R语言无法被嵌入到网络浏览器当中,Peng表示。“我们不能利用它开发Web类或者互联网类应用程序。”再有,我们基本上没办法利用R语言当作后端服务器执行计算任务,因为它在网络层面缺乏安全性保障,他表示。不过Amazon Web Services云平台上的虚拟容器等技术方案的出现已经在很大程度上解决了此类安全隐患,Peng补充道。
长久以来,R语言当中始终缺少充足的交互元素,他表示。但以JavaScript为代表的各类编程语言介入其中并填补了这项空白,Peng指出。虽然我们仍然需要利用R语言处理分析任务,但最终结果的具体显示方式则可以由JavaScript等其它语言来完成,他总结道。
R语言并不单纯面向高端程序员
不过Adams与Peng都会R视为一种易于接受的语言。“我本人并没有计算机科学教育背景,而且从来没想过要当一名程序员。将编程基础知识纳入技能储备当然很不错,但这并不是上手R语言的必要前提,”Adams指出。
“我甚至并不认为R语言只适用于程序员。它非常适合那些面向数据并试图解决相关问题的用户——无论他们的实际编程能力如何,”
以上是小编为大家分享的关于 R语言是什么?的相关内容,更多信息可以关注环球青藤分享更多干货
❸ python和r语言的区别是什么
在从事数据分析行业中,我们都会从R与Python当中进行选择,但是,从这两个异常强大、灵活好用的数据分析语中选择,却是非常难以选择的。
为了让大家能选择出更适合自己的语言,我们将两种语言进行简单的对比。
Stack Overflow趋势对比
相关推荐:《Python视频教程》
上图显示了自从2008年(Stack Overflow 成立)以来,这两种语言随着时间的推移而发生的变化。
R和Python在数据科学领域展开激烈竞争,我们来看看他们各自的平台份额,并将2016与2017年进行比较:
我们再从适用场景、任务、数据处理能力、开放环境来分析:
适用场景
R适用于数据分析任务需要独立计算或单个服务器的应用场景。Python作为一种粘合剂语言,在数据分析任务中需要与Web应用程序集成或者当一条统计代码需要插入到生产数据库中时,使用Python更好。
任务
在进行探索性统计分析时,R胜出。它非常适合初学者,统计模型仅需几行代码即可实现。Python作为一个完整而强大的编程语言,是部署用于生产使用的算法的有力工具。
数据处理能力
有了大量针对专业程序员以及非专业程序员的软件包和库的支持,不管是执行统计测试还是创建机器学习模型,R语言都得心应手。
Python最初在数据分析方面不是特别擅长,但随着NumPy、Pandas以及其他扩展库的推出,它已经逐渐在数据分析领域获得了广泛的应用。
开发环境
对于R语言,需要使用R Studio。对于Python,有很多Python IDE可供选择,其中Spyder和IPython Notebook是最受欢迎的。
R 和 Python 详细对比
R和Python之间有很强的关联,并且这两种语言日益普及,很难说选对其一,事实上日常用户和数据科学家可以同时利用这两种语言。
❹ 什么是数据挖掘中的关联分析
FineBI数据挖掘的结果将以字段和记录的形式添加到多维数据库中,并可以在新建分析时从一个专门的数据挖掘业务包中被使用,使用的方式与拖拽任何普通的字段没有任何区别。
配合FineBI新建分析中的各种控件和图表,使用OLAP的分析人员可以轻松的查看他们想要的特定的某个与结果,或是各种各样结果的汇总。
❺ 做数据分析必须学R语言的4个理由
做数据分析必须学R语言的4个理由
R 是一种灵活的编程语言,专为促进探索性数据分析、经典统计学测试和高级图形学而设计。R 拥有丰富的、仍在不断扩大的数据包库,处于统计学、数据分析和数据挖掘发展的前沿。R 已证明自己是不断成长的大数据领域的一个有用工具,并且已集成到多个商用包中,比如 IBM SPSS? 和 InfoSphere?,以及 Mathematica。
本文提供了一位统计学家Catherine Dalzell对 R 的价值的看法。
为什么选择 R?
R可以执行统计。您可以将它视为 SAS Analytics 等分析系统的竞争对手,更不用提 StatSoft STATISTICA 或 Minitab 等更简单的包。政府、企业和制药行业中许多专业统计学家和方法学家都将其全部职业生涯都投入到了 IBM SPSS 或 SAS 中,但却没有编写过一行 R 代码。所以从某种程度上讲,学习和使用 R 的决定事关企业文化和您希望如何工作。我在统计咨询实践中使用了多种工具,但我的大部分工作都是在 R 中完成的。以下这些示例给出了我使用 R 的原因:
R 是一种强大的脚本语言。我最近被要求分析一个范围研究的结果。研究人员检查了 1,600 篇研究论文,并依据多个条件对它们的内容进行编码,事实上,这些条件是大量具有多个选项和分叉的条件。它们的数据(曾经扁平化到一个 Microsoft? Excel? 电子表格上)包含 8,000 多列,其中大部分都是空的。研究人员希望统计不同类别和标题下的总数。R 是一种强大的脚本语言,能够访问类似 Perl 的正则表达式来处理文本。凌乱的数据需要一种编程语言资源,而且尽管 SAS 和 SPSS 提供了脚本语言来执行下拉菜单意外的任务,但 R 是作为一种编程语言编写的,所以是一种更适合该用途的工具。
R 走在时代的前沿。统计学中的许多新发展最初都是以 R 包的形式出现的,然后才被引入到商业平台中。我最近获得了一项对患者回忆的医疗研究的数据。对于每位患者,我们拥有医生建议的治疗项目数量,以及患者实际记住的项目数量。自然模型是贝塔—二项分布。这从上世纪 50 年代就已知道,但将该模型与感兴趣的变量相关联的估算过程是最近才出现的。像这样的数据通常由广义估计方程式 (general estimating equations, GEE) 处理,但 GEE 方法是渐进的,而且假设抽样范围很广。我想要一种具有贝塔—二项 R 的广义线性模型。一个最新的 R 包估算了这一模型:Ben Bolker 编写的 betabinom。而 SPSS 没有。
集成文档发布。 R 完美地集成了 LaTeX 文档发布系统,这意味着来自 R 的统计输出和图形可嵌入到可供发布的文档中。这不是所有人都用得上,但如果您希望便携异步关于数据分析的书籍,或者只是不希望将结果复制到文字处理文档,最短且最优雅的路径就是通过 R 和 LaTeX。
没有成本。作为一个小型企业的所有者,我很喜欢 R 的免费特定。即使对于更大的企业,知道您能够临时调入某个人并立即让他们坐在工作站旁使用一流的分析软件,也很不错。无需担忧预算。
R 是什么,它有何用途?
作为一种编程语言,R 与许多其他语言都很类似。任何编写过代码的人都会在 R 中找到很多熟悉的东西。R 的特殊性在于它支持的统计哲学。
一种统计学革命:S 和探索性数据分析
140 字符的解释:R 是 S 的一种开源实现,是一种用于数据分析和图形的编程环境。
计算机总是擅长计算 — 在您编写并调试了一个程序来执行您想要的算法后。但在上世纪 60 和 70 年代,计算机并不擅长信息的显示,尤其是图形。这些技术限制在结合统计理论中的趋势,意味着统计实践和统计学家的培训专注于模型构建和假设测试。一个人假定这样一个世界,研究人员在其中设定假设(常常是农业方面的),构建精心设计的实验(在一个农业站),填入模型,然后运行测试。一个基于电子表格、菜单驱动的程序(比如 SPSS 反映了这一方法)。事实上,SPSS 和 SAS Analytics 的第一个版本包含一些子例程,这些子例程可从一个(Fortran 或其他)程序调用来填入和测试一个模型工具箱中的一个模型。
在这个规范化和渗透理论的框架中,John Tukey 放入了探索性数据分析 (EDA) 的概念,这就像一个鹅卵石击中了玻璃屋顶。如今,很难想象没有使用箱线图(box plot) 来检查偏度和异常值就开始分析一个数据集的情形,或者没有针对一个分位点图检查某个线性模型残差的常态的情形。这些想法由 Tukey 提出,现在任何介绍性的统计课程都会介绍它们。但并不总是如此。
与其说 EDA 是一种理论,不如说它是一种方法。该方法离不开以下经验规则:
只要有可能,就应使用图形来识别感兴趣的功能。
分析是递增的。尝试以下这种模型;根据结果来填充另一个模型。
使用图形检查模型假设。标记存在异常值。
使用健全的方法来防止违背分布假设。
Tukey 的方法引发了一个新的图形方法和稳健估计的发展浪潮。它还启发了一个更适合探索性方法的新软件框架的开发。
S 语言是在贝尔实验室由 John Chambers 和同事开发的,被用作一个统计分析平台,尤其是 Tukey 排序。第一个版本(供贝尔实验室内部使用)于 1976 年开发,但直到 1988 年,它才形成了类似其当前形式的版本。在这时,该语言也可供贝尔实验室外部的用户使用。该语言的每个方面都符合数据分析的 “新模型”:
S 是一种在编程环境操作的解释语言。S 语法与 C 的语法很相似,但省去了困难的部分。S 负责执行内存管理和变量声明,举例而言,这样用户就无需编写或调试这些方面了。更低的编程开销使得用户可以在同一个数据集上快速执行大量分析。
从一开始,S 就考虑到了高级图形的创建,您可向任何打开的图形窗口添加功能。您可很容易地突出兴趣点,查询它们的值,使散点图变得更平滑,等等。
面向对象性是 1992 年添加到 S 中的。在一个编程语言中,对象构造数据和函数来满足用户的直觉。人类的思维始终是面向对象的,统计推理尤其如此。统计学家处理频率表、时间序列、矩阵、具有各种数据类型的电子表格、模型,等等。在每种情况下,原始数据都拥有属性和期望值:举例而言,一个时间序列包含观察值和时间点。而且对于每种数据类型,都应得到标准统计数据和平面图。对于时间序列,我可能绘制一个时间序列平面图和一个相关图;对于拟合模型,我可能绘制拟合值和残差。S 支持为所有这些概念创建对象,您可以根据需要创建更多的对象类。对象使得从问题的概念化到其代码的实现变得非常简单。
一种具有态度的语言:S、S-Plus 和假设测试
最初的 S 语言非常重视 Tukey 的 EDA,已达到只能 在 S 中执行 EDA 而不能执行其他任何操作的程度。这是一种具有态度的语言。举例而言,尽管 S 带来了一些有用的内部功能,但它缺乏您希望统计软件拥有的一些最明显的功能。没有函数来执行双抽样测试或任何类型的真实假设测试。但 Tukey 认为,假设测试有时正合适。
1988 年,位于西雅图的 Statistical Science 获得 S 的授权,并将该语言的一个增强版本(称为 S-Plus)移植到 DOS 以及以后的 Windows? 中。实际认识到客户想要什么后,Statistical Science 向 S-Plus 添加了经典统计学功能。添加执行方差分析 (ANOVA)、测试和其他模型的功能。对 S 的面向对象性而言,任何这类拟合模型的结果本身都是一个 S 对象。合适的函数调用都会提供假设测试的拟合值、残差和 p-值。模型对象甚至可以包含分析的中间计算步骤,比如一个设计矩阵的 QR 分解(其中 Q 是对角线,R 是右上角)。
有一个 R 包来完成该任务!还有一个开源社区
大约在与发布 S-Plus 相同的时间,新西兰奥克兰大学的 Ross Ihaka 和 Robert Gentleman 决定尝试编写一个解释器。他们选择了 S 语言作为其模型。该项目逐渐成形并获得了支持。它们将其命名为 R。
R 是 S 的一种实现,包含 S-Plus 开发的更多模型。有时候,发挥作用的是同一些人。R 是 GNU 许可下的一个开源项目。在此基础上,R 不断发展,主要通过添加包。R 包 是一个包含数据集、R 函数、文档和 C 或 Fortran 动态加载项的集合,可以一起安装并从 R 会话访问。R 包向 R 添加新功能,通过这些包,研究人员可在同行之间轻松地共享计算方法。一些包的范围有限,另一些包代表着整个统计学领域,还有一些包含最新的技术发展。事实上,统计学中的许多发展最初都是以 R 包形式出现的,然后才应用到商用软件中。
在撰写本文时,R 下载站点 CRAN 上已有 4,701 个 R 包。其中,单单那一天就添加了 6 个 R 。万事万物都有一个对应的 R 包,至少看起来是这样。
我在使用 R 时会发生什么?
备注:本文不是一部 R 教程。下面的示例仅试图让您了解 R 会话看起来是什么样的。
R 二进制文件可用于 Windows、Mac OS X 和多个 Linux? 发行版。源代码也可供人们自行编译。
在 Windows? 中,安装程序将 R 添加到开始菜单中。要在 Linux 中启动 R,可打开一个终端窗口并在提示符下键入 R。您应看到类似图 1 的画面。
图 1. R 工作区
在提示符下键入一个命令,R 就会响应。
此时,在真实的环境中,您可能会从一个外部数据文件将数据读入 R 对象中。R 可从各种不同格式的文件读取数据,但对于本示例,我使用的是来自 MASS 包的 michelson 数据。这个包附带了 Venables and Ripley 的标志性文本 Modern Applied Statistics with S-Plus(参见 参考资料)。michelson 包含来自测量光速的流行的 Michelson and Morley 实验的结果。
清单 1 中提供的命令可以加载 MASS 包,获取并查看 michelson 数据。图 2 显示了这些命令和来自 R 的响应。每一行包含一个 R 函数,它的参数放在方括号 ([]) 内。
清单 1. 启动一个 R 会话
2+2 # R can be a calculator. R responds, correctly, with 4.
library(“MASS”) # Loads into memory the functions and data sets from
# package MASS, that accompanies Modern Applied Statistics in S
data(michelson) # Copies the michelson data set into the workspace.
ls() # Lists the contents of the workspace. The michelson data is there.
head(michelson) # Displays the first few lines of this data set.
# Column Speed contains Michelson and Morleys estimates of the
# speed of light, less 299,000, in km/s.
# Michelson and Morley ran five experiments with 20 runs each.
# The data set contains indicator variables for experiment and run.
help(michelson) # Calls a help screen, which describes the data set.
图 2. 会话启动和 R 的响应
现在让我们看看该数据(参见 清单 2)。输出如 图 3 中所示。
清单 2. R 中的一个箱线图
# Basic boxplot
with(michelson, boxplot(Speed ~ Expt))
# I can add colour and labels. I can also save the results to an object.
michelson.bp = with(michelson, boxplot(Speed ~ Expt, xlab=”Experiment”, las=1,
ylab=”Speed of Light – 299,000 m/s”,
main=”Michelson-Morley Experiments”,
col=”slateblue1″))
# The current estimate of the speed of light, on this scale, is 734.5
# Add a horizontal line to highlight this value.
abline(h=734.5, lwd=2,col=”purple”) #Add modern speed of light
Michelson and Morley 似乎有计划地高估了光速。各个实验之间似乎也存在一定的不均匀性。
图 3. 绘制一个箱线图
在对分析感到满意后,我可以将所有命令保存到一个 R 函数中。参见清单 3。
清单 3. R 中的一个简单函数
MyExample = function(){
library(MASS)
data(michelson)
michelson.bw = with(michelson, boxplot(Speed ~ Expt, xlab=”Experiment”, las=1,
ylab=”Speed of Light – 299,000 m/s”, main=”Michelsen-Morley Experiments”,
col=”slateblue1″))
abline(h=734.5, lwd=2,col=”purple”)
}
这个简单示例演示了 R 的多个重要功能:
保存结果—boxplot() 函数返回一些有用的统计数据和一个图表,您可以通过类似 michelson.bp = … 的负值语句将这些结果保存到一个 R 对象中,并在需要时提取它们。任何赋值语句的结果都可在 R 会话的整个过程中获得,并且可以作为进一步分析的主题。boxplot 函数返回一个用于绘制箱线图的统计数据(中位数、四分位等)矩阵、每个箱线图中的项数,以及异常值(在 图 3 中的图表上显示为开口圆)。请参见图 4。
图 4. 来自 boxplot 函数的统计数据
公式语言— R(和 S)有一种紧凑的语言来表达统计模型。参数中的代码 Speed ~ Expt 告诉函数在每个 Expt (实验数字)级别上绘制 Speed 的箱线图。如果希望执行方差分析来测试各次实验中的速度是否存在显着差异,那么可以使用相同的公式:lm(Speed ~ Expt)。公式语言可表达丰富多样的统计模型,包括交叉和嵌套效应,以及固定和随机因素。
用户定义的 R 函数— 这是一种编程语言。
R 已进入 21 世纪
Tukey 的探索性数据分析方法已成为常规课程。我们在教授这种方法,而统计学家也在使用该方法。R 支持这种方法,这解释了它为什么仍然如此流行的原因。面向对象性还帮助 R 保持最新,因为新的数据来源需要新的数据结构来执行分析。InfoSphere? Streams 现在支持对与 John Chambers 所设想的不同的数据执行 R 分析。
R 与 InfoSphere Streams
InfoSphere Streams 是一个计算平台和集成开发环境,用于分析从数千个来源获得的高速数据。这些数据流的内容通常是非结构化或半结构化的。分析的目的是检测数据中不断变化的模式,基于快速变化的事件来指导决策。SPL(用于 InfoSphere Streams 的编程语言)通过一种范例来组织数据,反映了数据的动态性以及对快速分析和响应的需求。
我们已经距离用于经典统计分析的电子表格和常规平面文件很远,但 R 能够应付自如。从 3.1 版开始,SPL 应用程序可将数据传递给 R,从而利用 R 庞大的包库。InfoSphere Streams 对 R 的支持方式是,创建合适的 R 对象来接收 SPL 元组(SPL 中的基本数据结构)中包含的信息。InfoSphere Streams 数据因此可传递给 R 供进一步分析,并将结果传回到 SPL。
R 需要主流硬件吗?
我在一台运行 Crunchbang Linux 的宏碁上网本上运行了这个示例。R 不需要笨重的机器来执行中小规模的分析。20 年来,人们一直认为 R 之所以缓慢是因为它是一种解释性语言,而且它可以分析的数据大小受计算机内存的限制。这是真的,但这通常与现代机器毫无干系,除非应用程序非常大(大数据)。
R 的不足之处
公平地讲,R 也有一些事做不好或完全不会做。不是每个用户都适合使用 R:
R 不是一个数据仓库。在 R 中输入数据的最简单方式是,将数据输入到其他地方,然后将它导入到 R 中。人们已经努力地为 R 添加了一个电子表格前端,但它们还没流行起来。电子表格功能的缺乏不仅会影响数据输入,还会让以直观的方式检查 R 中的数据变得很困难,就像在 SPSS 或 Excel 中一样。
R 使普通的任务变得很困难。举例而言,在医疗研究中,您对数据做的第一件事就是计算所有变量的概括统计量,列出无响应的地方和缺少的数据。这在 SPSS 中只需 3 次单击即可完成,但 R 没有内置的函数来计算这些非常明显的信息,并以表格形式显示它。您可以非常轻松地编写一些代码,但有时您只是想指向要计算的信息并单击鼠标。
R 的学习曲线是非平凡的。初学者可打开一个菜单驱动的统计平台并在几分钟内获取结果。不是每个人都希望成为程序员,然后再成为一名分析家,而且或许不是每个人都需要这么做。
R 是开源的。R 社区很大、非常成熟并且很活跃,R 无疑属于比较成功的开源项目。前面已经提到过,R 的实现已有超过 20 年历史,S 语言的存在时间更长。这是一个久经考验的概念和久经考验的产品。但对于任何开源产品,可靠性都离不开透明性。我们信任它的代码,因为我们可自行检查它,而且其他人可以检查它并报告错误。这与自行执行基准测试并验证其软件的企业项目不同。而且对于更少使用的 R 包,您没有理由假设它们会实际生成正确的结果。
结束语
我是否需要学习 R?或许不需要;需要 是一个感情很强烈的词。但 R 是否是一个有价值的数据分析工具呢?当然是的。该语言专为反映统计学家的思考和工作方式而设计。R 巩固了良好的习惯和合理的分析。对我而言,它是适合我的工作的工具。
❻ 用R语言进行关联分析
用R语言进行关联分析
关联是两个或多个变量取值之间存在的一类重要的可被发现的某种规律性。关联分析目的是寻找给定数据记录集中数据项之间隐藏的关联关系,描述数据之间的密切度。
几个基本概念
1. 项集
这是一个集合的概念,在一篮子商品中的一件消费品即为一项(Item),则若干项的集合为项集,如{啤酒,尿布}构成一个二元项集。
2. 关联规则
一般记为的形式,X为先决条件,Y为相应的关联结果,用于表示数据内隐含的关联性。如:,表示购买了尿布的消费者往往也会购买啤酒。
关联性强度如何,由三个概念——支持度、置信度、提升度来控制和评价。
例:有10000个消费者购买了商品,其中购买尿布1000个,购买啤酒2000个,购买面包500个,同时购买尿布和面包800个,同时购买尿布和面包100个。
3. 支持度(Support)
支持度是指在所有项集中{X, Y}出现的可能性,即项集中同时含有X和Y的概率:
该指标作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。通过设定最小阈值(minsup),剔除“出镜率”较低的无意义规则,保留出现较为频繁的项集所隐含的规则。
设定最小阈值为5%,由于{尿布,啤酒}的支持度为800/10000=8%,满足基本输了要求,成为频繁项集,保留规则;而{尿布,面包}的支持度为100/10000=1%,被剔除。
4. 置信度(Confidence)
置信度表示在先决条件X发生的条件下,关联结果Y发生的概率:
这是生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。相似的,我们需要对置信度设定最小阈值(mincon)来实现进一步筛选。
具体的,当设定置信度的最小阈值为70%时,置信度为800/1000=80%,而的置信度为800/2000=40%,被剔除。
5. 提升度(lift)
提升度表示在含有X的条件下同时含有Y的可能性与没有X这个条件下项集中含有Y的可能性之比:
该指标与置信度同样衡量规则的可靠性,可以看作是置信度的一种互补指标。
R中Apriori算法
算法步骤:
1. 选出满足支持度最小阈值的所有项集,即频繁项集;
2. 从频繁项集中找出满足最小置信度的所有规则。
> library(arules) #加载arules包
> click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)) #读取txt文档(文档编码为ANSI)
> rules <- apriori(click_detail, parameter =list(supp=0.01,conf=0.5,target="rules")) #调用apriori算法
> rules
set of419 rules
> inspect(rules[1:10]) #查看前十条规则
解释
1) library(arules):加载程序包arules,当然如果你前面没有下载过这个包,就要先install.packages(arules)
2) click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)):读入数据
read.transactions(file, format =c("basket", "single"), sep = NULL,
cols = NULL, rm.plicates =FALSE, encoding = "unknown")
file:文件名,对应click_detail中的“click_detail.txt”
format:文件格式,可以有两种,分别为“basket”,“single”,click_detail.txt中用的是basket。
basket: basket就是篮子,一个顾客买的东西都放到同一个篮子,所有顾客的transactions就是一个个篮子的组合结果。如下形式,每条交易都是独立的。
文件形式:
item1,item2
item1
item2,item3
读入后:
items
1 {item1,
item2}
2 {item1}
3 {item2,
item3}
single: single的意思,顾名思义,就是单独的交易,简单说,交易记录为:顾客1买了产品1, 顾客1买了产品2,顾客2买了产品3……(产品1,产品2,产品3中可以是单个产品,也可以是多个产品),如下形式:
trans1 item1
trans2 item1
trans2 item2
读入后:
items transactionID
1 {item1} trans1
2 {item1,
item2} trans2
sep:文件中数据是怎么被分隔的,默认为空格,click_detail里面用逗号分隔
cols:对basket, col=1,表示第一列是数据的transaction ids(交易号),如果col=NULL,则表示数据里面没有交易号这一列;对single,col=c(1,2)表示第一列是transaction ids,第二列是item ids
rm.plicates:是否移除重复项,默认为FALSE
encoding:写到这里研究了encoding是什么意思,发现前面txt可以不是”ANSI”类型,如果TXT是“UTF-8”,写encoding=”UTF-8”,就OK了.
3) rules <- apriori(click_detail,parameter = list(supp=0.01,conf=0.5,target="rules")):apriori函数
apriori(data, parameter = NULL, appearance = NULL, control = NULL)
data:数据
parameter:设置参数,默认情况下parameter=list(supp=0.1,conf=0.8,maxlen=10,minlen=1,target=”rules”)
supp:支持度(support)
conf:置信度(confidence)
maxlen,minlen:每个项集所含项数的最大最小值
target:“rules”或“frequent itemsets”(输出关联规则/频繁项集)
apperence:对先决条件X(lhs),关联结果Y(rhs)中具体包含哪些项进行限制,如:设置lhs=beer,将仅输出lhs含有beer这一项的关联规则。默认情况下,所有项都将无限制出现。
control:控制函数性能,如可以设定对项集进行升序sort=1或降序sort=-1排序,是否向使用者报告进程(verbose=F/T)
补充
通过支持度控制:rules.sorted_sup = sort(rules, by=”support”)
通过置信度控制:rules.sorted_con = sort(rules, by=”confidence”)
通过提升度控制:rules.sorted_lift = sort(rules, by=”lift”)
Apriori算法
两步法:
1. 频繁项集的产生:找出所有满足最小支持度阈值的项集,称为频繁项集;
2. 规则的产生:对于每一个频繁项集l,找出其中所有的非空子集;然后,对于每一个这样的子集a,如果support(l)与support(a)的比值大于最小可信度,则存在规则a==>(l-a)。
频繁项集产生所需要的计算开销远大于规则产生所需的计算开销
频繁项集的产生
几个概念:
1, 一个包含K个项的数据集,可能产生2^k个候选集
2,先验原理:如果一个项集是频繁的,则它的所有子集也是频繁的(理解了频繁项集的意义,这句话很容易理解的);相反,如果一个项集是非频繁的,则它所有子集也一定是非频繁的。
3基于支持度(SUPPORT)度量的一个关键性质:一个项集的支持度不会超过它的子集的支持度(很好理解,支持度是共同发生的概率,假设项集{A,B,C},{A,B}是它的一个自己,A,B,C同时发生的概率肯定不会超过A,B同时发生的概率)。
上面这条规则就是Apriori中使用到的,如下图,当寻找频繁项集时,从上往下扫描,当遇到一个项集是非频繁项集(该项集支持度小于Minsup),那么它下面的项集肯定就是非频繁项集,这一部分就剪枝掉了。
一个例子(网络到的一个PPT上的):
当我在理解频繁项集的意义时,在R上简单的复现了这个例子,这里采用了eclat算法,跟apriori应该差不多:
代码:
item <- list(
c("bread","milk"),
c("bread","diaper","beer","eggs"),
c("milk","diaper","beer","coke"),
c("bread","milk","diaper","beer"),
c("bread","milk","diaper","coke")
)
names(item) <- paste("tr",c(1:5),sep = "")
item
trans <- as(item,"transactions") #将List转为transactions型
rules = eclat(trans,parameter = list(supp = 0.6,
target ="frequent itemsets"),control = list(sort=1))
inspect(rules) #查看频繁项集
运行后结果:
>inspect(rules)
items support
1{beer,
diaper} 0.6
2{diaper,
milk} 0.6
3{bread,
diaper} 0.6
4{bread,
milk} 0.6
5{beer} 0.6
6{milk} 0.8
7{bread} 0.8
8{diaper} 0.8
以上就是该例子的所有频繁项集,然后我发现少了{bread,milk,diaper}这个项集,回到例子一看,这个项集实际上只出现了两次,所以是没有这个项集的。
规则的产生
每个频繁k项集能产生最多2k-2个关联规则
将项集Y划分成两个非空的子集X和Y-X,使得X ->Y-X满足置信度阈值
定理:如果规则X->Y-X不满足置信度阈值,则X’->Y-X’的规则一定也不满足置信度阈值,其中X’是X的子集
Apriori按下图进行逐层计算,当发现一个不满足置信度的项集后,该项集所有子集的规则都可以剪枝掉了。
❼ 基于R语言的分类算法之决策树
基于R语言的分类算法之决策树
ID3 《= 最大信息熵增益,只能处理离散型数据
C4.5 《= 信息增益率,可处理连续性和离散型数据,相比ID3,减少了因变量过多导致的过拟合
C5.0 《= 信息增益率,运算性能比C4.5更强大
CART 《= 基尼指数最小原则,连续性和离散型数据均可
信息熵体现的是数据的杂乱程度,信息越杂乱,信息熵越大,反之越小。 例如:拥有四种连续型变量的特征变量的信息熵一定比拥有三种的要大。
特征变量的N种可能性,每种可能性的概率相同,N越大,信息熵越大。
每种可能性的概率不同,越偏态,信息熵越小。
所有特征变量中,信息增益率的,就是根节点(root leaf),根节点一般是选择N越大的特征变量,因为N越大,信息熵越大。
信息增益率是在信息熵的基础上作惩罚计算,避免特征变量可能性多导致的高信息增益。
代码相关
library(C50)
C5.0(x,y, trials = 1, rules=FALSE,weights=NULL,control=C5.0Control(),costs=NULL)
x为特征变量,y为应变量
trials 为迭代次数(这个值根据不同数据而不同,并非越大越好,一般介于5-15之间,可以用遍历来寻找最高准确率的模型,对模型准确率的提升效果中等)
cost 为损失矩阵,R中应该传入一个矩阵(据说是对准确率矩阵约束猜测错误的项,但是并没特别明显的规律,可以使用遍历来寻找最好的cost,准确率提升效果小)
costs <- matrix(c(1,2,1,2),
ncol = 2, byrow = TRUE,
dimnames = list(c("yes","no"), c("yes","no")))
control 设置C5.0模型的其他参数,比如置信水平和节点最小样本等(水很深,参数很多,可以自行查阅R的帮助文档,我只设置了一个CF,准确率提升效果小)
control = C5.0Control(CF = 0.25)
library(C50)
#对iris随机划分训练集和测试集
set.seed(1234)
index <- sample(1:nrow(iris), size = 0.75*nrow(iris))
train <- iris[index,]
test <- iris[-index,]
#查看训练集和测试集分布是否合理
prop.table(table(train$Species))
prop.table(table(test$Species))
#不设置任何参数
fit1 <- C5.0(x = train[,1:4], y = train[,5])
pred1 <- predict(fit1, newdata = test[,-5])
freq1 <- table(pred1, test[,5])
accuracy <- sum(diag(freq1))/sum(freq1)
pred1 setosa versicolor virginica
setosa 16 0 0
versicolor 0 13 1
virginica 0 0 8
准确率为0.9736842,只有一个错误。。。显然150个iris太少了,优化都省了。
❽ 怎么学习用r语言进行数据挖掘
首先R是一种专业性很强的统计语言,如果想学得快一些的话,基本的统计学知识要懂,不然很多东西会掌握的比较慢。
掌握基本语法和操作,推荐国内的已经翻译的比如《R语言实战》《R语言编程艺术》,这个过程中最好结合一些小例子来做一些分析的东西。如果需要可视化的话,强烈不推荐学习R本身的作图系统,实在是太不友好了.....还是用ggplot2吧。
掌握了上面的,就可以深入一些了,如果是做数据分析和可视化,推荐《ggplot2:数据分析与图形艺术》,这个才是作图的神器啊.....如果是空间分析相关的,推荐《Applied Spatial Data Analysis with R》,这个如果可以的话看英文版,而且要有地学的一些知识背景,中文版翻译的太次了,尽量不要看。数据挖掘机器学习之类的,可以看看比如《数据挖掘与R语言》、《机器学习——实用案例解析》,不过我觉得这几本书没上面的那几本好,但是可以大概看看是咋回事,最好还是看看专门的相关书籍,熟悉各种算法和流程,到时候搜索R的package,照着文档和例子搞定,不是特别难。
-
❾ 求关联规则中FPgrowth算法的R语言代码
安装格式化插件:1.按Ctrl+Shift+P调出命令面板2.输入install调出Pac