导航:首页 > 源码编译 > 分形维数算法

分形维数算法

发布时间:2022-08-05 18:07:35

⑴ 盒维数和分形维数在哪一门学科中

图形分形维数。这个可以在matlab中用Fractlab这个工具箱,这个工具箱可以在网上下载。网上也有fraclab的使用说明,打开界面后把图导进去,选择维数计算,然后选择网格数之类的就可以了,我已经试过了。但感觉算法有点粗糙。希望能帮到你。
另外还有一个方法,用ARCGIS软件,我还没有尝试,只能算出一种维数,类似线路覆盖维数。算维数一般有两种方法,一种是网格法,一种是尺度变换法。前者针对方形图形,后者主要是圆形。

⑵ 分形维数表达的是一个什么概念

表达了有一些看上去不规则的事物实际上可以用内在的规律表征,这个表征就是分形(fractal),表征的程度就是分形维数(fractal dimension),分形更是一种认知自然世界的世界观、方法论,你需要去看书,多看相关的东西,才能有深刻的了解,我只是编制过分形维数计算程序,有一些了解,好久都没看了,加油好好学。。。

⑶ 分形维数表达的是一个什么概念啊关联维又是什么意思啊

看你这个问题有段时间了吧?算了,大概说说,以前接触过混沌:
一般的维数概念源于欧式空间,但这种维数概念有一定局限性
必须是整数,在描述一些不规则且不光滑对象时不是很理想
具有正常维数的图形的一个重要性质:当对某一图形的容积进行测量时
若用本维图形的尺度进行测量,则测量的结果为有限值
用较低维数的尺度测量,则测量的结果无限大,用较高维数的尺度测量
则量度为0。分数维数就是对这种维数进行的扩展
分数维数有很多种定义,如豪斯道夫维、相似维、信息维、盒维、关联维等
关联维是基于实验数据提取分维的一种方法,相当于在不知背景相空间维数
的情况下,从少量的数据序列来提取维数的一种算法。

⑷ 怎样用matlab计算分形盒维数呢!

根据计盒维数原理求一维曲线分形维数的matlab程序
function D=FractalDim(y,cellmax)
%求输入一维信号的计盒分形维数
%y是一维信号
%cellmax:方格子的最大边长,可以取2的偶数次幂次(1,2,4,8...),取大于数据长度的偶数 %D是y的计盒维数(一般情况下D>=1),D=lim(log(N(e))/log(k/e)),
if cellmax<length(y)
error('cellmax must be larger than input signal!')
end
L=length(y);%输入样点的个数
y_min=min(y);
%移位操作,将y_min移到坐标0点
y_shift=y-y_min;
%重采样,使总点数等于cellmax+1
x_ord=[0:L-1]./(L-1);
xx_ord=[0:cellmax]./(cellmax);
y_interp=interp1(x_ord,y_shift,xx_ord);
%按比例缩放y,使最大值为2^^c
ys_max=max(y_interp);
factory=cellmax/ys_max;
yy=abs(y_interp*factory);
t=log2(cellmax)+1;%叠代次数
for e=1:t
Ne=0;%累积覆盖信号的格子的总数
cellsize=2^(e-1);%每次的格子大小
NumSeg(e)=cellmax/cellsize;%横轴划分成的段数
for j=1:NumSeg(e) %由横轴第一个段起通过计算纵轴跨越的格子数累积N(e) begin=cellsize*(j-1)+1;%每一段的起始
tail=cellsize*j+1;
seg=[begin:tail];%段坐标
yy_max=max(yy(seg));
yy_min=min(yy(seg));
up=ceil(yy_max/cellsize);
down=floor(yy_min/cellsize);
Ns=up-down;% 本段曲线占有的格子数
Ne=Ne+Ns;%累加每一段覆盖曲线的格子数
MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。

⑸ 迭代、分形和混沌

地球物理场能量很小,除天然地震震源物理研究外,场正演问题都归结为线性偏微分方程。但是,反问题都是非线性的。

5.1.1 牛顿迭代与分形

非线性迭代的最基本方法是牛顿迭代法。也就是说,将函数展成台劳级数,略去高次项,从一次项中提出修改增量和Jacobian矩阵,构成线性方程组。牛顿迭代法收敛很快,但是收敛取决于初始猜测。

1988年,Petigen与Saupe的论文集中发表了一个有趣的试验结果,他考虑以下简单的非线性方程

z3-1=0 (5.1.1)

此方程的一个实根为z=1,两个复根为

z=exp(± 2πi/3) (5.1.2)

用牛顿迭代格式

地球物理数据处理教程

来逼近,得到的是实根还是哪一个复根?

当然,初值z0可以是复平面z=x+iy中的任一点。可以猜测,z0在复平面上可以分为若干个区域,z0在某个区域用式(5.1.3)作迭代后收敛,在另外的区域收敛于复根。习惯于线性思维的人会认为这些区域是有清晰边界分开的几块,如z0等于1的邻域牛顿迭代将收敛于实根z=1,它的面积大约占z平面的1/3左右,而其他区域收敛于复根。事实并非如此,初值z0的收敛域是分形的,如图5.1所示。从图5.1 可见,黑色区域的面积的确是选初值区域(-2≤x≤2,-2≤y≤2)的1/3,但它的边界是分形的,即含有所有的尺度,彼此自相似。为什么像式(5.1.1)那么简单的迭代格式会导致这么复杂的分形图像?为什么初值在这种边界上的微小变化会使迭代收敛到完全不同的根?

图5.1 实虚轴在(-2,2)范围内的复平面z黑色区域经牛顿迭代后收敛于实根z=1初值区,白色为收敛于复根的区域

问题归结为方程(5.1.1)的非线性,而非线性是系统走向混沌的必要条件。对于非线性系统,初值的微小变化会使系统状态在几个“吸引子”之间回弹,其几何表现就是分形。

5.1.2 分形地球模型

本书把地球参数看成是实函数集,即Hilbert空间的元,这是确定性模型。确定性模型隐含着地球物质有序分布的假定,而随机模型隐含着地球物质随机分布的假定。我们现在进一步假定地球物质分布是自相似或自仿射的,具有多尺度的层次结构,这就导致地球的分形模型。

从分形的观点描述地球的根据是:地球是无标度的复杂对象,其尺度可由几毫米的微裂缝到上万公里的地球直径,而不同尺度之间的现象具有相似性。

人有特征尺度,即人的身高,在1.6 m或5 ft左右。因此,人造的东西也有特征尺度,如火车的高度在2m上下,轮船和高楼平均为几十米,这种特征尺度称为标度。

自然现象一般具有多尺度的特征,没有特征尺度。分形几何学把不同尺度的现象用标度律联系起来

p(λt)=λαp(t),0 < α < 1 (5.1.4)

式中p(t)为某种层次的尺度,p(λt)为它放大λ倍之后的尺度,α为标度指数。而

D0=2-α (5.1.5)

等于Mandelbrot分维数。

维数指的是几何对象中的一个点所置的独立坐标的个数,如地球表面的一个点用经纬度表示,它的维数是2。在分形几何学中,维数可以为分数,分数的维数称为分维数。

对二维情况,一个正方形每边都放大3倍(尺度放大),则变为9个原正方形,有

2=l n9/l n3

对整数维为d的几何对象,每个方向都放大L倍,结果得到N个原来的对象,有

d=lnN/lnL

每个方向放大L倍等效于此方向测量尺度(或度量的单位)缩小为原来的ε=1/L倍。因此,在一般情况下,用很小的度量单位ε研究对象的尺度变化时,可定义

地球物理数据处理教程

这就是Mandelbrot分形维。

1992年Korvin编了一本名为《地学中的分形模型》的书,书中列举了与地球科学有关的许多分形模型。其中谈到,1984年美国地调所出动数十辆消防车对内华达岩石出露区进行冲洗,然后对其裂隙作详细填图,得出该区裂隙系统的平均分维数为1.744。用大尺度的区域断裂构造图计算此区断裂系统的分维数为1.773,证实了不同层次的地球断裂系统之间具有自相似性。陈颙与特科特等人的专着对此也有精彩的描述。

关于分形几何学与其他分维数(如相关维D2、信息维D1等)的讨论详见有关专着。以下只介绍对时间序列计算分形维D0的方法。传统的介绍D0分维数的方法多用时间系列的功率谱计算。由于地球物理资料的功率谱在高频段含有大量噪音,这种计算方法几乎不能用。我们只研究以下算法,在反射地震资料处理上取得良好效果。

对平面曲线,其总长度为

地球物理数据处理教程

式中:ε为度量单位(尺子);N为量得的尺数;f为尺子量完后的剩余长度(f<ε);D0为Mandelbrot分形维数。将式(5.1.7)两边取对数,有

ln(N+f/ε)=-D0lny+lnL (5.1.8)

设时间序列为 {s1,s2,…,sm},取样率为Δt,则用ε1=Δt为尺子量出它对应的曲线长度为

地球物理数据处理教程

再令ε2=2Δt为尺子量出,有

地球物理数据处理教程

取ε3=4Δt,有

地球物理数据处理教程

将式(5.1.9)至(5.1.11)代入式(5.1.8)有方程

ln(Nj+fjj)=-D0lnεj+lnL,j=1,2,3 (5.1.12)

用最小二乘法易求出方程组(5.1.12)中的两个未知数D0和L。当然,还可取ε4=8Δt等,以提高求分形维D0的准确度。下节还要提到,反演迭代输出序列的分形维是指示迭代状态的一种有用参数。

5.1.3 非线性迭代与混沌

设xn为第n步的迭代输出,xn+1为下一步的迭代输出,二次方程

xn+1=rxn(1-xn) (5.1.13)

虽然很简单,但迭代过程(演化)却是很复杂的。这个方程称为May生态方程。将xn+1及xn视为若干年后池塘中大鱼的产量,由于xn越大繁殖就越多,所以xn+1与它成正比;又因大鱼越多吃的小鱼也越多,xn+1又与(1-xn)成正比。这就是生态方程的含义,系数r与饲料总量有关。

将xn及xn+1视为若干年后你的一笔银行存款的总值,当年存款xn越多次年本利就越多,所以xn+1与xn成比例。但是,存款越多银行利率下降越多,xn+1又与(1-xn)成比例。系数r为控制参数,与银行存款总量有关。可见,生态方程反映许多自然与人文发展的规律。

将(5.1.13)式中的xn+1视为常数,则它是一个关于xn的二次方程,有两个根。这意味着演化问题存在两种选择(线性问题只有一种选择)。xn有两种选择将造成迭代输出不稳定,在两种选择中跳来跳去。例如,池塘鱼的产量和水果产量常出现大年与小年的区别,这种演化成为二齿分叉(Pitchfork bifurcation)。

分叉取决于控制参数r,二齿分叉可能不断进行下去,即由两叉变四叉,四叉变八叉。具体地说,随r从很小变到r=r1=1.0时,开始第一次分叉。当r=r2=3时,再次分四叉等等。此后,迭代变得非常不稳定,并很快变得没有规律和不可预测(即混沌)。

图5.2示出二次映射的迭代输出随控制系数的分叉过程,以及相应的Lyapunov指数。由图可见,二次映射迭代随外部控制参数r的增大导致有规律的分叉,直至走向混沌。

图5.2 二次映射(式(5.1.13))的迭代输出xn随r的变化,黑色区表示混沌区(a),以及Lyapunov指数的变化(b)

在非线性动力学中,混沌指的是非线性系统演化的一种不确定和无规则状态。分叉、间歇、突变(如相变)都是典型的不规则状态。在地球科学中,火山爆发是典型的间歇,地震发生是能量的突然释放,其形成的断裂裂隙具有分形结构。

混沌发生的必要条件是系统为非线性。多层次的复杂非线性系统(如人类社会)由于其自组织的困难,较易演化为混沌运动(如战争)。开放的耗散(Dissipative)系统由于固有的非线性性质,也经常出现混沌。但是,非线性只是混沌运动发生的必要条件,而不是充分条件。混沌运动的特征如下。

(1)不可预测性,指初始条件有微小的差别将导致最终结果迥然不同。设迭代映射方程为xn+1=f(xn),例如当f为二次函数时,它变成(5.1.13)的May生态方程。f在一般情况下指任何导致混沌结果的函数。如果初始条件x0带有微小的误差ε0,经过N次迭代后其误差被指数放大,记fN(x0+ε)为带误差的迭代输出,有

地球物理数据处理教程

因此定义

地球物理数据处理教程

为Lyapunov指数。还可将式(5.1.15)写为

地球物理数据处理教程

可见Lyapunov指数表示经N次迭代后系统演化轨道加速偏离的指数。设|ΔI|为经过一次迭代后系统信息的平均损失,有

λ(x0)=ln2|ΔI| (5.1.17)

说明λ与|ΔI|成正比。根据Shannon信息论,系统信息量等于该系统作完备描述编码所需的最小bit数目。当λ>0时,每次迭代的信息损失都大于零,系统的熵不断增大以导致混沌的发生。图5.2(b)示出了二次迭代的λ随r的变化并将它与系统的分叉和混沌作对比。由图可见,λ<0时对应的系统稳定,在λ=0的点系统发生分叉,而λ>0的点对应混沌。因此,Lyapunov是指示状态的重要标量参数。

(2)整体行为的有规律性。虽然系统在未来的具体状态具有不确定性和不可预测,但是“表面上看起来疯狂杂乱,其实自有规矩”(莎士比亚)。所有系统演化的轨迹形成的相空间的图形中,存在若干个吸引轨迹的若干个很小的空间(成为吸引子),使轨迹不断收缩到其中,或者突跳到另一个吸引子附近。这种现象表示整体行为仍具有整体性。

整体行为的规律性还表现在不同层次的运动的相似性(分形)上。Feigenbaum证明,无论是哪种形如xn+1=f(xn)的混沌运动,其转化为混沌的尺度特征都由两个普适常数控制,更说明混沌理论具有整体规律性。

形式周期性,混沌状态的发生有时会重复出现,但这种重复是不确定的。例如,大地震的发生时多时少,既包括高频度的重复出现,又没有准确的周期。

非线性科学研究的全面展开,还是20世纪90年代的事。19世纪建立了线性科学的理论框架,它在20世纪发展为完整的体系。但是非线性科学理论框架的建立,将是21世纪的事。对正问题的研究尚且如此,对非线性问题的研究更加零星。接下来介绍根据混沌理论进行非线性反演的一些实例。

⑹ 请问关联维数(分形维数)和分数维有什么联系与区别

关联维数实际上是分形维数的一种,因为有很成熟的G-P算法的存在,利于计算和应用。

分形维数除了用分形维数计算,还可以用盒子维数来计算,此外还有折线法等等。

关联维数(分形维数)等于二减去赫斯特指数,分数维是赫斯特指数的倒数,都是经验公式。很多情况下并不满足,理论上的分形维数应该是豪斯道夫维数,但这很难计算。

⑺ sierpinski地毯的分形维数是多少

3 Gouraud颜色渐变203
10.1.1 算法原理56
3.1.2.3.3.3.7.1.2.1.1.4 分形维数的定义158
8.3.2.4 B样条曲线的性质146
7.2.5 C字曲线168
8.1 中点分割直线裁剪算法原理103
5.1.4 小结52
习题252第3章 基本图形的扫描转换55
3.1.4.1 三视图115
6.2 材质模型和光照模型205
10.2.2 随机扫描显示器8
1.4 Peano-Hilbert曲线171
8.5.2 Koch曲线161
8.1 纹理定义209
10.3 边界条件133
7.3.6.4 Bezier曲线137
7.3 边缘填充算法80
4.7.2.2.2 MFC上机操作步骤28
2.3 旋转变换矩阵92
5.2.1 平移变换109
6.2.4.2 Koch曲线170
8.4.4.0绘图基础21
2.4 四邻接点填充算法和八邻接点填充算法84
4.1.5.5 透视投影分类125
6.2 圆的扫描转换57
3.2 比例变换矩阵91
5.3 椭圆的扫描转换60
3.3 Hermite样条曲线135
7.2 二次B样条曲线143
7.5 小结85
习题485第5章 二维变换和裁剪89
5.2 双三次Bezier曲面的定义141
7.4 连续性条件131
7.3.5.1 规范化齐次坐标89
5.3 漫反射光模型206
10.1 直线的扫描转换55
3.3 真实感图形显示技术19
1.1.1.3 计算机图形学的相关学科5
1.2.2 构造中点偏差判别式56
3.1 填充原理82
4.3.5 枫叶生成182
8.3.4 区域填充算法82
4.2 构造上半部分I中点偏差判别式62
3.1.2 有效边表填充算法75
4.1.2.2 填充过程80
4.2.3 二维复合变换95
5.6.2.2 分形的基本特征157
8.4.4 反走样技术66
3.3.5 直线距离加权反走样算法67
3.5.2 IFS175
8.2 TestView.5.7 三维显示器15
1.5.4.2 曲面体消隐算法192
9.1 Cantor集160
8.2.3 算法的几何意义104
5.2.2.2 构造距离判别式69
3.5.4 边表79
4.5.3 三次B样条曲线144
7.1 计算机图形学的应用领域1
1.3 交点计算公式102
5.1.3 分形的定义158
8.2 三次参数样条曲线132
7.5 Bezier曲面141
7.3.4 区域填充74
4.2.1 L系统文法169
8.2 画家算法197
9.1 实面积图形的概念72
4.1 颜色模型201
10.4.6 等离子显示器15
1.1 Bezier曲线的定义137
7.5 错切变换112
6.3.3 窗视变换矩阵100
5.7 梁友栋-Barsky直线裁剪算法103
5.1.3 L系统模型169
8.1.1.4 设备上下文的调用和释放50
2.4.2 多边形的表示73
4.3 对象的动态建立和释放24
2.5 透视变换120
6.2 坐标系变换121
6.2 构造中点偏差判别式59
3.6 中点分割直线裁剪算法103
5.1 平移变换矩阵91
5.4.1 多边形的定义73
4.1 填充原理75
4.3 直视储存管显示器8
1.2 曲线曲面的表示形式130
7.2.7.1.1 计算机辅助设计1
1.3 分形草171
8.2.3.1 凸多面体消隐算法190
9.3 用户坐标系到观察坐标系的变换122
6.3.1 类和对象21
2.2 计算机图形学的概念4
1.7.3 四连通域和八连通域83
4.1.4 二维图形裁剪98
5.1.1 样条曲线曲面130
7.3.4 继承与派生25
2.2 三维基本几何变换矩阵109
6.1.5.1.5 小结198
习题9198第10章 真实感图形201
10.2 环境光模型206
10.2 系数求解133
7.3 TestView.1 交互技术18
1.4.7.4.4.4 二维几何变换90
5.1 图形的几何信息和拓扑信息187
9.2 中点计算公式103
5.1.5.4 构造下半部分II中点偏差判别式64
3.3 Bezier曲线的可分割性139
7.3 相对于任意方向的二维几何变换96
5.4 观察坐标系到屏幕坐标系的变换124
6.1 算法原理61
3.5 错切变换矩阵94
5.2 构造函数和析构函数22
2.4 反射变换111
6.1 Bezier曲面的定义141
7.4.2.2 纹理映射210
10.1 B样条曲线的定义143
7.3.3 多边形的填充74
4.3.4 IFS迭代函数系统模型174
8.4.3 隐线算法190
9.3 双三次B样条曲面的连续性150
7.3 CDC类的主要绘图成员函数34
2.3.2 窗口和视区及窗视变换99
5.2 二维图形基本几何变换矩阵91
5.2 四邻接点和八邻接点82
4.5.1.2.1 梁友栋算法原理103
5.4 光栅扫描显示器9
1.2.7.5 Cohen-Sutherland直线裁剪算法101
5.1 编码原理101
5.2.1.1 Z-Buffer算法194
9.2.2 三维几何变换108
6.1 三维变换矩阵108
6.2 比例变换109
6.6.1 面向对象程序设计基础21
2.2 造型技术18
1.6 Caley树168
8.1 算法原理67
3.3.4 投影变换115
6.6.1 图形几何变换基础89
5.1.2.1.2 Bezier曲线的性质139
7.2.5.8 小结152
习题7152第8章 分形几何156
8.5.6.3.4.4 Sierpinski垫片180
8.4 镜面反射光模型207
10.5 下半部分II的递推公式64
3.3 基本绘图函数31
2.2.3 纹理映射209
10.1.3.5 VC++绘制图形的几种方法51
2.2 计算机艺术1
1.5.3.6.1 阴极射线管7
1.7 B样条曲面149
7.3 Koch曲线178
8.3.3 计算机化69
3.7.h文件210
10.2 基本图形的数据结构187
9.4 OpenGL简介210
10.cpp文件213
10.6 B样条曲线142
7.1 分形和分维156
8.4.3.6 小结69
习题369第4章 多边形填充72
4.1.2.3 虚拟现实3
1.5.1 基本概念201
10.4 Sierpinski垫片、地毯和海绵164
8.3 递推公式60
3.4.3 Peano-Hilbert曲线162
8.2 双三次B样条曲面的定义149
7.4.1 分形的诞生156
8.1.1.4.4 计算机辅助教学3
1.6 小结127
习题6128第7章 自由曲线和曲面130
7.4.1.2.2 算法分析104
5.1 案例效果210
10.5.2 RGB颜色模型202
10.1 CDC类结构和GDI对象32
2.4 计算机图形学的确立和发展5
1.1 三维几何变换108
6.3 立体表示模型188
9.5.7.1 仿射变换174
8.2 映射模式33
2.4 反射变换矩阵93
5.7 计算机图形学的最新技术18
1.5.1.4.1 填充原理80
4.7.5 光强的衰减208
10.1 复合变换原理95
5.4.2 边界像素的处理原则75
4.5 图形显示器的发展及其工作原理7
1.5 小结183
习题8183第9章 动态消隐187
9.2 斜等侧图118
6.2.4.6.1 B样条曲面的定义149
7.5 液晶显示器13
1.5 分形灌木丛173
8.1 图形学中常用的坐标系98
5.1 物体的材质205
10.1 图形的数据结构187
9.5.1.6 图形软件标准的形成18
1.3 有效边和有效边表76
4.3 上半部分I的递推公式62
3.3 旋转变换110
6.5.4 隐面算法194
9.1 基本概念130
7.8 小结19
习题119第2章 Visual C++6.3.2.2 裁剪步骤102
5.3 拟合和逼近131
7.2 消隐算法分类190
9.3 递推公式57
3.1 算法原理58
3.8 小结106
习题5106第6章 三维变换和投影108
6.1.3 二维变换矩阵90
5.2 矩阵相乘89
5.4 程序说明220
10.5 构造特殊的三次B样条曲线的技巧148
7.2 相对于任一参考点的二维几何变换95
5.3 三维复合变换113
6.1 透视变换坐标系120
6.1 参数样条曲线定义132
7.2 递归模型160
8目录

计算机图形学基础教程(Visual C++版)

第1章 导论1
1.1

⑻ 摘要翻译,谢谢!

The origin and development process contributes to a better understanding of the fractal phenomena in nature for the fractal growth image computer simulation, and the calculation of fractal dimension of the process and results of the fractal aggregation is helpful to help us find the different fractal phenomenon or things and the relation between. Using a computer to simulate the general process of different fractal growth, to program the results proced by the graphic method, then to find the general law according to the calculation of the fractal dimension of the fractal phenomenon, has become an important step in the field of fractal graphics. In this paper two kinds of simulation model of growth of different fractal: diffusion non-grid aggregation model (DLA) and cluster

人工翻译可能会有些错误,谢谢!

⑼ 分形维数的计算方法有那些能具体说一下吗

它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下。过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。二1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻划这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部着作《分开:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓朴维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新着《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特(C.Tricot)引入填充维数,1983年格拉斯伯格(P.Grassberger)和普罗克西娅(I.Procaccia)提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金(F.M.Dekking)研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。 自然界中的分形,与概率统计、随机过程关系密切。确定性的古典分形集加入随机性,就会产生出随机康托集、随机科契曲线等各种随机分形。1968年,曼德尔布罗特研究布朗运动这一随机过程时,将其推广到与分形有关的分数布朗运动。1974年他又提出了分形渗流模型。1988年,柴叶斯(j.T.Chayes)给出了详细的数学分析。1984年,扎乐(U.Zahle)通过随机删除而得到十分有趣的分形构造,随机分形能更真实地描述和模拟自然现象。三动力系统中的分形集是近年分形几何中最活跃和引人入胜的一个研究领域。动力系统的奇异吸引子通常都是分形集,它们产生于非线性函数的迭代和非线性微分方程中。1963年,气象学家洛伦兹(E.N.Lorenz)在研究流体的对流运动时,发现了以他的名字命名的第一个奇异吸引子,它是一个典型的分形集。1976年,法国天文学家伊侬(M.Henon)考虑标准二次映射迭代系统时获得伊侬吸引子。它具有某种自相似性和分形性质。1986年劳威尔(H.A.Lauwerier)将斯梅尔的马蹄映射变形成劳威尔映射,其迭代下不稳定流形的极限集成为典型的奇异吸引子,它与水平线的截面为康托集。1985年,格雷波基(C.Grebogi)等构造了一个二维迭代函数系统,其吸附界是维尔斯特拉斯函数,并得到盒维数。1985年,迈克多纳(S.M.MacDonald)和格雷波基等得到分形吸附界的三种类型:(!)局部不连通的分形集;(2)局部连通的分形拟圆周;(3)既不局部连能又不是拟圆周。前两者具有拟自相似性。 动力系统中另一类分形集来源于复平面上解析映射的迭代。朱利亚(G.Julia)和法图(P.Fatou)于1918-1919年间开创这一研究。他们发现,解析映射的迭代把复平面划分成两部分,一部分为法图集,另一部分为朱利亚集(J集)。他们在处理这一问题时还没有计算机,完全依赖于他们自身固有的想象力,因此他们的智力成就受到局限。随后50年间,这方面的研究没有得到什么进展。随着可用机算机来做实验,这一研究课题才又获得生机。1980年,曼德尔布罗特用计算机绘出用他名字命名的曼德尔布罗特集(M集)的第一张图来。1982道迪(A.Douady)构造了含参二次复映射fc ,其朱利亚集J(fc)随参数C的变化呈现各种各样的分形图象,着名的有道迪免子,圣马科吸引子等。同年,茹厄勒(D.Ruelle)得到J集与映射系数的关系,解新局面了解析映射击集豪斯道夫维数的计算问题。茄勒特(L.Garnett)得到J(fc)集豪斯道夫维数的数值解法。1983年,韦当(M.Widom)进一步推广了部分结果 。法图1926年就就开始整函数迭代的研究。1981年密休威茨(M.Misiuterwicz)证明指数映射的J集为复平面,解决了法图提出的问题,引起研究者极大兴趣。发现超越整函数的J集与有理映射J的性质差异,1984年德万尼(R.L.Devanney)证明指数映射Eλ的J(Eλ)集是康托束或复平面而J(fc)是康托尘或连通集。 复平面上使J(fc)成为连通集的点C组成M集即曼德尔布罗特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)认为,M集的性质过去一直是并且将来继续是数学研究的一个巨大难题。通过将数学理论与计算机图形学实验加以融合,及道迪、扈巴德(H.Hubbard)等人在这方面进行的基础性研究工作,在解决这一难题方面已取得重大进展,使人们加深了对M集的了解。道迪和扈巴德1982年证明M集是连通的和单连通的,人们猜测M集是局部连通的,目前每一张计算机图形都证实了这一猜测,但至今还没有人能给予证明。M是否为弧连通,目前尚不清楚。M集边界的维数也是值得研究的问题之一。 M集除了将J集分成连通与非连通的两类之外,还起着无穷个J集的图解目录表作用,即把M集C点周围的图形放大就是与C点有关的J集的组成部分。但这一发现的数学密性至今仍未确定,谭磊(Tan Lei)1985年证明了在每一个密休威茨点邻近M集与相关的J集之间存在着相似性。尤金斯等在M集的静电位研究中获得与自然形貌相似的分形图象。目前包括尤金斯等在内的很多研究人员都致力于借助计算机活动录象探索M集。其它一些分形集的研究工作正在取得进展。1990年德万尼通过数值实验观察到M集的复杂图形由许多不同周期的周期轨道的稳定区域共同构成。1991年黄永念运用他提出的代数分析法证明了这一事实,研究了M集及其广义情况周期轨道整体解析特性。 巴斯莱(B.M.Barnsley)和德门科(S.Demko)1985年引入迭代函数系统,J集及其其它很多分形集都是某些迭代函数的吸引集,用其它方法产生的分形集也可用迭代函数系逼近。1988年,劳威尔通过数值研究发现毕达哥拉斯树花是一迭代函数系的J集。1985年巴斯莱等研究含参数的函数系迭代动力系统,得到M集D并D与M在连通性上的差异。在一线性映射系迭代下,可以产生着名的分形曲线——双生龙曲线。1986年水谷(M.Mitzutani)等对其动力系统进行了研究。 一般动力系统中的分形集,其豪斯道夫维数dH难以通过理论方法或计算方法求得。对于有迭式构造的分形集,贝德浮德(T.Bedford)等在1986年已给出卓有成效的算法,但对一般非线性映射迭代动力系统产生的分形集,这些结果都难以应用,其豪斯道夫维数dH的结论与算法实际上没有。卡普兰(j.L.Kaplan)和约克(J.A.York) 1979年引入李雅普洛夫维数dL并猜测dL=dH。1981年勒拉皮尔证明dH≤dL。杨(L.S.Young)1982年证明二维情况下dH=dL。艾茄瓦(A.K.Agarwal)等1986年给出例子说明高维情形卡普兰-约克猜测不成立。这一猜测力图从动力学特征推断几何结构,其反问题是由吸引子维数推断混沌力学,这是值得研究的问题。但目前工作甚少且主要限于计算机研究。此外,含参动力系统在混沌临界态或突变处的分形集维数也有待进一步研究。 多重分形(multifractals)是与动力系统奇异吸引子有关的另一类重要分形集,其概念首先由曼德布罗特和伦依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定义了多重分形广义维数。1988年博尔(T.Bohr)等人将拓扑熵引入多重分形的动力学描述与热力学类比。1988年,阿内多(A.Arneodo)等人将子波变换用于多重分形研究。费德(J.Feder)、特尔(T.Tel)等人进行了多重分形子集及标度指数的研究。阿姆特里卡等研究了多重分形的逆问题,提出广义配分函数,给出广义超越维数,对过去的维数进行了修正。李(J.Lee)等发现了多重分形热力学形式上的相变。1990年,伯克(C.Beck)得到广义维数的上下界和极限并研究了多重分形的均匀性量度。曼德布罗特研究了随机多重分形及负分维。1991年科维克(Z.Kov.acs)等引入双变量迭代系统,最大特征值和吉布斯势导出维数、熵、李雅普洛夫指数,提供了对多重分形相变分类的一般方案。对于多重分形相变分类的一般方案。对于多重分形目前虽已提出不少处理方法,但从数学的观点上看,还不够严格,部分问题的数学处理难度也较大。四分形理论真正发展起来才十余年,并且方兴未艾,很多方面的理论还有待进一步研究。值得注意的是,近年分形理论的应用发展远远超过了理论的发展,并且给分形的数学理论提出了更新更高的要求。各种分形维数计算方法和实验方法的建立、改进和完善,使之理论简便,可操作性强,是喁喁分形的科学家们普遍关注的问题。而在理论研究上,维数的理论计算、估计、分形重构(即求一动力系统,使其吸引集为给定分形集)、J集和M集及其推广形式的性质、动力学特征及维数研究将会成为数学工作者们十分活跃的研究领域。多重分形理论的完善、严格以及如何用这些理论来解决实际问题可能会引起科学家们广泛的兴趣,而动力学特征、相变和子波变换可能会成为其中的几个热点。 在哲学方面,人们的兴趣在于自相似性的普适性,M集和J集表现出的简单性与复杂性,复数与实数的统一性,多重分形相变与突变论的关系,自组织临界(SOC)现象的刻画以及分形体系内部的各种矛盾的转化等。可以预言,一场关于分形科学哲学问题的讨论即将在国内展开。

阅读全文

与分形维数算法相关的资料

热点内容
ubuntu压缩zip 浏览:2
vigenere算法的方法是什么 浏览:666
pdf保护破解 浏览:341
仿微信聊天系统源码广州公司 浏览:106
怎么查看我的世界服务器日志 浏览:430
怎么从程序员走到成功 浏览:824
把软件放入文件夹中如何移出 浏览:209
红包源码企业即时聊天软件 浏览:581
xp安装python 浏览:10
西门子参数编程读取半径值 浏览:403
洗首饰解压小视频 浏览:966
01背包问题的算法解决 浏览:373
sd卡放哪个文件夹 浏览:301
解释器模式java 浏览:104
android垂直自动滚动条 浏览:153
计算器java小程序 浏览:27
java的简称 浏览:68
云服务器公网ip地址 浏览:581
php对数据库操作 浏览:237
java爬图片 浏览:868