导航:首页 > 源码编译 > 可见水印算法python

可见水印算法python

发布时间:2022-08-05 21:05:11

‘壹’ 关于数字水印常用算法的实现原理

典型数字水印算法
近年来,数字水印技术研究取得了很大的进步,下面对一些典型的算法进行了分析,除特别指明外,这些算法主要针对图像数据(某些算法也适合视频和音频数据)。
空域算法
该类算法中典型的水印算法是将信息嵌入到随机选择的图像点中最不重要的像素位 (LSB:least significant bits)上,这可保证嵌入的水印是不可见的。但是由于使用了图像不重要的像素位,算法的鲁棒性差,水印信息很容易为滤波、图像量化、几何变形的操作破坏。另外一个常用方法是利用像素的统计特征将信息嵌入像素的亮度值中。
Patchwork算法
方法是随机选择N对像素点 (ai,bi) ,然后将每个ai点的亮度值加 1 ,每个bi点的亮度值减 1,这样整个图像的平均亮度保持不变。适当地调整参数,Patchwork方法对JPEG压缩、FIR滤波以及图像裁剪有一定的抵抗力,但该方法嵌入的信息量有限。为了嵌入更多的水印信息,可以将图像分块,然后对每一个图像块进行嵌入操作。
变换域算法
该类算法中,大部分水印算法采用了扩展频谱通信 (spread spectrum communication)技术。算法实现过程为:先计算图像的离散余弦变换 (DCT),然后将水印叠加到DCT域中幅值最大的前k系数上(不包括直流分量),通常为图像的低频分量。若DCT系数的前k个最大分量表示为D=,i=1 ,… ,k,水印是服从高斯分布的随机实数序列W =,i=1 ,… ,k,那么水印的嵌入算法为di = di(1 + awi),其中常数a为尺度因子,控制水印添加的强度。然后用新的系数做反变换得到水印图像I。解码函数则分别计算原始图像I和水印图像I*的离散余弦变换,并提取嵌入的水印W*,再做相关检验 以确定水印的存在与否。该方法即使当水印图像经过一些通用的几何变形和信号处理操作而产生比较明显的变形后仍然能够提取出一个可信赖的水印拷贝。一个简单改进是不将水印嵌入到DCT域的低频分量上,而是嵌入到中频分量上以调节水印的顽健性与不可见性之间的矛盾。另外,还可以将数字图像的空间域数据通过离散傅里叶变换(DFT)或离散小波变换(DWT)转化为相应的频域系数;其次,根据待隐藏的信息类型,对其进行适当编码或变形;再次,根据隐藏信息量的大小和其相应的安全目标,选择某些类型的频域系数序列(如高频或中频或低频);再次,确定某种规则或算法,用待隐藏的信息的相应数据去修改前面选定的频域系数序列;最后,将数字图像的频域系数经相应的反变换转化为空间域数据。该类算法的隐藏和提取信息操作复杂,隐藏信息量不能很大,但抗攻击能力强,很适合于数字作品版权保护的数字水印技术中。
压缩域算法
基于JPEG、MPEG标准的压缩域数字水印系统不仅节省了大量的完全解码和重新编码过程,而且在数字电视广播及VOD(Video on Demand)中有很大的实用价值。相应地,水印检测与提取也可直接在压缩域数据中进行。下面介绍一种针对MPEG-2压缩视频数据流的数字水印方案。虽然MPEG-2数据流语法允许把用户数据加到数据流中,但是这种方案并不适合数字水印技术,因为用户数据可以简单地从数据流中去掉,同时,在MPEG-2编码视频数据流中增加用户数据会加大位率,使之不适于固定带宽的应用,所以关键是如何把水印信号加到数据信号中,即加入到表示视频帧的数据流中。对于输入的MPEG-2数据流而言,它可分为数据头信息、运动向量(用于运动补偿)和DCT编码信号块3部分,在方案中只有MPEG-2数据流最后一部分数据被改变,其原理是,首先对DCT编码数据块中每一输入的Huffman码进行解码和逆量化,以得到当前数据块的一个DCT系数;其次,把相应水印信号块的变换系数与之相加,从而得到水印叠加的DCT系数,再重新进行量化和Huffman编码,最后对新的Huffman码字的位数n1与原来的无水印系数的码字n0进行比较,只在n1不大于n0的时候,才能传输水印码字,否则传输原码字,这就保证了不增加视频数据流位率。该方法有一个问题值得考虑,即水印信号的引入是一种引起降质的误差信号,而基于运动补偿的编码方案会将一个误差扩散和累积起来,为解决此问题,该算法采取了漂移补偿的方案来抵消因水印信号的引入所引起的视觉变形。
NEC算法
该算法由NEC实验室的Cox等人提出,该算法在数字水印算法中占有重要地位,其实现方法是,首先以密钥为种子来产生伪随机序列,该序列具有高斯N(0,1)分布,密钥一般由作者的标识码和图像的哈希值组成,其次对图像做DCT变换,最后用伪随机高斯序列来调制(叠加)该图像除直流(DC)分量外的1000个最大的DCT系数。该算法具有较强的鲁棒性、安全性、透明性等。由于采用特殊的密钥,因此可防止IBM攻击,而且该算法还提出了增强水印鲁棒性和抗攻击算法的重要原则,即水印信号应该嵌入源数据中对人感觉最重要的部分,这种水印信号由独立同分布随机实数序列构成,且该实数序列应该具有高斯分布N(0,1)的特征。
生理模型算法
人的生理模型包括人类视HVS(HumanVisualSystem)和人类听觉系统HAS。该模型不仅被多媒体数据压缩系统利用,同样可以供数字水印系统利用。利用视觉模型的基本思想均是利用从视觉模型导出的JND(Just Noticeable Difference)描述来确定在图像的各个部分所能容忍的数字水印信号的最大强度,从而能避免破坏视觉质量。也就是说,利用视觉模型来确定与图像相关的调制掩模,然后再利用其来插入水印。这一方法同时具有好的透明性和强健性。

‘贰’ 如何用python操作word添加水印

加水印的方法!

‘叁’ 什么是数字水印技术,有那些分类及其作用

----按水印的特性可以将数字水印分为鲁棒数字水印和易损数字水印两类。鲁棒水印(robust
watermarking)主要用于在数字作品中标识着作权信息,利用这种水印技术在多媒体内容的数据中嵌入创建者、所有者的标示信息,或者嵌入购买者的标示(即序列号)。在发生版权纠纷时,创建者或所有者的信息用于标示数据的版权所有者,而序列号用于追踪违反协议而为盗版提供多媒体数据的用户。用于版权保护的数字水印要求有很强的鲁棒性和安全性,除了要求在一般图像处理(如:滤波、加噪声、替换、压缩等)中生存外,还需能抵抗一些恶意攻击。
----易损水印(fragile
watermarking),与鲁棒水印的要求相反,易损数字水印主要用于完整性保护,这种水印同样是在内容数据中嵌入不可见的信息。当内容发生改变时,这些水印信息会发生相应的改变,从而可以鉴定原始数据是否被篡改。易损水印应对一般图像处理(如:滤波、加噪声、替换、压缩等)有较强的免疫能力(鲁棒性),同时又要求有较强的敏感性,即:既允许一定程度的失真,又要能将失真情况探测出来。必须对信号的改动很敏感,人们根据易损水印的状态就可以判断数据是否被篡改过。
----不同的应用需求造就了不同的水印技术。按水印的用途,我们可以将数字水印划分为票证防伪水印、版权保护水印、篡改提示水印和隐蔽标识水印。
----票证防伪水印是一类比较特殊的水印,主要用于打印票据和电子票据、各种证件的防伪。一般来说,伪币的制造者不可能对票据图像进行过多的修改,所以,诸如尺度变换等信号编辑操作是不用考虑的。但另一方面,人们必须考虑票据破损、图案模糊等情形,而且考虑到快速检测的要求,用于票证防伪的数字水印算法不能太复杂。
----版权标识水印是目前研究最多的一类数字水印。数字作品既是商品又是知识作品,这种双重性决定了版权标识水印主要强调隐蔽性和鲁棒性,而对数据量的要求相对较小。
----篡改提示水印是一种脆弱水印,其目的是标识原文件信号的完整性和真实性。
----隐蔽标识水印的目的是将保密数据的重要标注隐藏起来,限制非法用户对保密数据的使用。
----按数字水印的隐藏位置,我们可以将其划分为时(空)域数字水印、频域数字水印、时/频域数字水印和时间/尺度域数字水印。
----时(空)域数字水印是直接在信号空间上叠加水印信息,而频域数字水印、时/频域数字水印和时间/尺度域数字水印则分别是在dct变换域、时/
频变换域和小波变换域上隐藏水印。
----随着数字水印技术的发展,各种水印算法层出不穷,水印的隐藏位置也不再局限于上述四种。应该说,只要构成一种信号变换,就有可能在其变换空间上隐藏水印。
按透明性划分
按数字水印的透明性质,可分为可见水印和不可见水印两种。可见水印就是人眼能看见的水印,比如照片上标记的拍照的日期或者电视频道上的标识等。不可见水印就是人类视觉系统难以感知的,也是当前数字水印领域关注比较多的。

‘肆’ 大虾帮帮我关于 数字水印 !!

三、应用:数字水印

消息认证与数字签名可以应用到数字水印中。

传统水印用来证明纸币或纸张上内容的合法性,数字水印(digital watermark)用以证明一个数字产品的拥有权、真实性。数字水印是嵌在数字产品中的数字信息。可以是作者的序列号、公司标志、有特殊意义的文本等。

数字水印主要用于:阻止非法复制(间接的)、确定所有权(作者、发行人、分发商、合法的最终用户)、确定作品的真实性和完整性(是否伪造、被篡改)、证实收件人、不可否认的传送、法庭证据的验证、赝品甄别、识别文件来源与版本、Web网络巡逻监视盗贼等。

传统水印是人眼可以看得见的,而数字水印可以分为可感知的(Perceptible)和不易感知的(Inperceptible)两种。

可感知的数字水印,主要用于当场声明对产品的所有权、着作权及来源,起到一个宣传广告或约束的作用。可感知水印一般为较淡的或半透明的不碍观瞻的图案;比如电视台节目播放的同时,在某个角落插上电视台的半透明标志。另一个用途是为了在线分发作品,比如先将一个低分辨率的有可见水印的图像免费送人,其水印往往是拥有者或卖主的信息,它提供了寻找原高分辨率作品的线索,若想得到高分辨率的原作品则需付费。有些公司在产品出售前为了在网络上宣传其产品,先做上可逆可见水印分发,付费购买时,再用专用软件将可见水印去掉,加入不可见水印(发行人、分发商、最终用户等的信息)。可见水印还有另一些用途,那就是为了节约带宽、存储空间等原因,在VCD、DVD等电影拷贝中用嵌入不可见水印的方式配上多种语言的副标题和字幕,待播放时由硬件根据需要实时地解出每一帧中的水印文字,将其显示在屏幕上。

可见水印在某些产品中或多或少降低了作品的观赏价值,使其用途相对受到一定限制。不易感知的水印的应用层次更高,制作难度更大。

不易感知的数字水印就像隐形墨水技术中的看不见的文字,隐藏在数字产品中。水印的存在要以不破坏原数据的欣赏价值、使用价值为原则。数字水印按照某种方式植入被保护的信息中,在产生版权纠纷时,通过相应的算法提取出该数字水印,从而验证版权的归属。被保护的信息可以是图像、声音、视频或一般性的电子文档等。为了给攻击者增加去除水印的难度,大多数水印制作方案都在水印的嵌入、提取时使用密钥。

图5.7水印的嵌入与提取

数字水印技术虽然不能阻止盗版活动的发生,但它可以判别对象是否受到保护,监视被保护数据的传播、真伪鉴别和非法拷贝、解决版权纠纷并为法庭提供证据。

数字水印的设计需要考虑以下几个方面:

鲁棒性:是指被保护的信息经过某种改动后抵抗隐藏信息丢失的能力。例如传输过程中的信道噪音、滤波操作、重采样、有损编码压缩、D/ A或 A/ D转换、图像的几何变换(如平移、伸缩、旋转、剪裁等)。

不可检测性(不可见性):是指隐蔽载体与原始载体具有一致的特性。如具有一致的统计噪声分布等,以便使非法拦截者很难判断是否有隐蔽信息。

透明性:是指经过一系列隐藏处理后,原始数据没有明显的降质现象。

安全性:要求隐藏算法有较强的抗攻击能力(篡改、伪造、去除水印),使隐藏信息不会被破坏。如不因文件格式转换而丢失水印,且未经授权者不能检测出水印。

自恢复性:由于经过一些操作或变换后,可能会使原数据产生较大的破坏,如果只从留下的片段数据,仍能恢复隐藏信号,而且恢复过程不需要原数据,这就是自恢复性(自相似性)。

水印容量:水印容量和鲁棒性之间是相互矛盾的。水印容量的增加会带来鲁棒性的下降,对不可见性也有影响。为抵抗各种变换,水印通常需要按照一定的排列方式反复加入多次,当水印容量大时重复次数只好减少,而鲁棒性不好就会导致检测结果的不可靠。

数字水印技术有多种分类。

按作用可划分为鲁棒水印和脆弱水印。前者主要应用于数字作品中标志着作版权信息,需要嵌入的水印能够抵抗常见的编辑处理和有损压缩;后者主要用于完整性保护,判断信号是否被篡改。

按水印的载体可分为图像水印、视频水印、音频水印、文本水印和印刷水印等。

按检测方法可分为明水印和盲水印。在检测过程中需要原数据的技术称为明水印,其鲁棒性较强;在检测过程中不需要原数据的技术称为盲水印。

按内容可分为内容水印和标志水印。内容水印是指水印经过攻击受损后人们仍能通过感觉判断内容;标志水印是指通过检测判断来确定信号中是否有水印标志。

按用途可分为版权保护水印、篡改提示水印、票据防伪水印、隐蔽标识水印、印刷数字水印等。

数字水印其内容可以是任何具有代表意义的信息,如图像、文字、数字、符号等,为了便于隐藏,水印的体积越小越好。用文本作为水印信息是较好的选择,既节约空间又能直读出其含义。数字水印主要应用在版权保护、加指纹、标题与注释、篡改提示、使用控制等领域。

版权保护:即数字媒体的所有者可用密钥产生一个水印,并将其嵌入原始数据,然后公开发布他的水印版本作品。数字媒体包括音像制品、数字广播、DVD、MP3等。当该作品被盗版或出现版权纠纷时,所有者即可从盗版作品或水印版作品中获取水印信号作为依据,从而保护所有者的权益。

版权跟踪:为避免未经授权的拷贝制作和发行,出品人可以将不同用户的ID或序列号作为不同的水印嵌入作品的合法拷贝中,称为数字指纹。其目的是通过授权用户的信息来识别数据的发行拷贝,监控和跟踪使用过程中的非法拷贝。一旦发现未经授权的拷贝,就可以根据此拷贝所恢复出的指纹来确定它的来源。

标题与注释:即将作品的标题、注释等内容以水印形式嵌入该作品中,这种隐式注释不需要额外的带宽,且不易丢失。如在遥感图像等信息中隐藏日期、经纬度等。

篡改提示:当数字作品被用于法庭、医学、新闻及商业时,常需确定它们的内容是否被修改、伪造或特殊处理过。为实现该目的,通常可将原始图象分成多个独立块,再将每个块加入不同的水印。同时可通过检测每个数据块中的水印信号,来确定作品的完整性。与其他水印不同的是,这类水印必须是脆弱的,并且检测水印信号时,不需要原始数据。

使用控制:这种应用的一个典型的例子是DVD防拷贝系统,即将水印信息加入DVD数据中,这样DVD播放机即可通过检测DVD数据中的水印信息而判断其合法性和可拷贝性。从而保护制造商的商业利益。

典型数字水印算法包括以下几种算法。

空域算法:此算法首先把一个密钥输入一个m-序列发生器来产生水印信号,然后排列成2维水印信号,按象素点逐一嵌入到原始图象最不重要的像素位枣最低位(LSB:least significant bits)。这可保证嵌入的水印是不可见的。但是由于使用了图像不重要的像素位,算法的鲁棒性差,水印信息很容易为滤波、图像量化、几何变形的操作破坏,因此不够强壮。

文本水印算法:通过轻微改变字符间距,行间距或是增加、删除字符特征如底纹线等方法来嵌入水印。或是在符号级或语义级加入水印,例如,可以用big替换文本中的large。

基于改变图象数据统计特性的水印算法:Patchwork算法首先随机选取N对象素点,然后通过增加象素对中一个点的亮度值,而相应降低另一个点的亮度值。这样整个图像的平均亮度保持不变。适当地调整参数,Patchwork方法对JPEG压缩、FIR滤波以及图像裁剪有一定的抵抗力,但该方法嵌入的信息量有限。

频域算法:它是利用一个信号可以掩盖另一个较弱的信号这一频率掩盖现象。图象的频域空间中可以嵌入大量的比特而不引起可察的降质,当选择改变中频或低频分量(除去直流分量)来加入水印时,强壮性可大大提高。频域水印技术可以利用通用的离散余弦变换,小波变换和傅立叶变换等变换方法。其优点是隐藏效果好,人眼不能发觉与原始图象间的差别;使用密钥控制,只有知晓伪装密钥的人才能解密;可以有效的抵抗剪切及JEPG等有损压缩编码;水印图象可以是灰度图象。但该类算法的隐藏和提取信息操作复杂,隐藏信息量不能很大。

压缩域算法:水印检测与提取直接在压缩域数据中进行。把水印信号加到表示视频帧的数据流中去。MPEG-2数据流可分为数据头信息、运动向量(用于运动补偿)和DCT编码信号块3部分,该算法只有DCT编码信号块被改变。首先对DCT编码数据块中每一输入的Huffman码进行解码和逆量化,以得到当前数据块的一个DCT系数;其次,把相应水印信号块的变换系数与之相加,从而得到水印叠加的DCT系数,再重新进行量化和Huffman编码,最后对新的Huffman码字的位数n1与原来的无水印系数的码字n0进行比较,只在n1不大于n0的时候,才传输水印码字,否则传输原码字,这就保证了不增加视频数据流位率。该方法中水印信号的引入是一种引起降质的误差信号,而基于运动补偿的编码方案会将一个误差扩散和累积起来,为解决此问题,该算法采取了漂移补偿的方案来抵消因水印信号的引入所引起的视觉变形。

NEC算法:该算法由NEC实验室的COX等人提出,在数字水印算法中占有重要地位。COX认为水印信号应该嵌入源数据中对人的感觉最重要的部分。在频谱空间中,这种重要部分就是低频分量。这样,攻击者在破坏水印的过程中,不可避免地会引起图象质量的严重下降。水印信号应该由具有高斯分布的独立同分布随机实数序列构成。这使得水印经受多拷贝联合攻击的能力大大增强。实现方法是:首先以密钥为种子来产生伪随机序列,该序列具有高斯N(0,1)分布,密钥一般由作者的标识码和图象的哈希值组成,对整幅图象做DCT变换,用伪随机高斯序列来调制(叠加)该图象除直流分量(DC)外的1000个最大的DCT系数。该算法具有较强的鲁棒性、安全性、透明性等。

生理模型算法:人的生理模型包括人类视觉系统HVS(HumanVisualSystem)和人类听觉系统HAS。利用视觉模型的基本思想是利用从视觉模型导出的JND(Just Noticeable Difference)描述来确定在图象的各个部分所能容忍的数字水印信号的最大强度,从而能避免破坏视觉质量。也就是说,利用视觉模型来确定与图象相关的调制掩模,然后再利用其来插入水印。这一方法同时具有好的透明性和强健性。

数字水印在版权标识、隐藏标识和篡改提示、数据防伪上具有不可替代的作用,它将在商业、金融、军事和个人消费上带来巨大的商业利润。自1995年以来,该领域的研究工作已经取得了巨大的进展。随着数字水印技术的日趋成熟,数字水印技术将在电子商务、视频点播、远程教学和远程培训中发挥越来越大的作用。

‘伍’ 图片水印是什么东西了

水印是向数据多媒体(如图像、声音、视频信号等)中添加某些数字信息以达到文件真伪鉴别、版权保护等功能。水印是无法去除的。

嵌入的水印信息隐藏于宿主文件中,不影响原始文件的可观性和完整性。

水印应能为受到版权保护的信息产品的归属提供完全和可靠的证据。水印算法识别被嵌入到保护对象中的所有者的有关信息(如注册的用户号码、产品标志或有意义的文字等)并能在需要的时候将其提取出来。

水印可以用来判别对象是否受到保护,并能够监视被保护数据的传播、真伪鉴别以及非法拷贝控制等。

(5)可见水印算法python扩展阅读:

水印的分类

1,从视觉角度分:可见水印、不可见水印。顾名思义,就是以嵌入水印后,能否被人以肉眼识别水印为依据划分的;

2,从水印嵌入位置分:时(空)域数字水印、频域数字水印、时/频域数字水印和时间/尺度域数字水印。

3,从鲁棒性划分:鲁棒水印、完全脆弱水印、半脆弱水印。

‘陆’ 数字水印的价值,意义以及优点~谁能帮下忙

数字版权的最后一道防线—数字水印

■ 北京大学计算机科学技术 研究所 朱新山

--------------------------------------------------------------------------------

数字水印被视做抵抗多媒体盗版的“最后一道防线”。因此从水印技术自身来说,它具有广泛的应用前景和巨大的经济价值。

当今社会的发展已经呈现两个明显的特征:数字化和网络化。数字化指的是信息的存储形式,特点是信息存储量大、便于编辑和复制;网络化指的是信息的传输形式,具有速度快、分布广的优点。过去10年,数字媒体信息的使用和分布呈爆炸性的增长。人们通过互联网可以快捷方便地获得数字信息和在线服务。但同时,盗版也变得更加容易,对数字内容的管理和保护成为业界迫切需要解决的问题。

数字信息在本质上有别于模拟信息,传统的保护模拟信息的方案对数字信息已不再奏效。再加上一些具有通用目的的处理器,如PC机,使得那些基于硬件的媒体保护方案很容易被攻破。而通常采用的加密技术事实上只能在信息从发送者到接受者的传输过程中保护媒体的内容。在信息被接收到以后,再利用的过程中所有的数据对使用者都是透明的,不再受到任何保护。在这一形势下,数字水印作为一种潜在的解决方案,得到了众多学者的青睐。

数字水印的基本思想是在原始媒体数据中,如音频、视频、图像等,隐藏具有一定意义的附加信息作为标记,这些信息与原始数据紧密结合,并随之一起被传输。在接收端,通过计算机水印信号被提取出来用于各种目的,可能的应用包括数字签名、数字指纹、广播监视、内容认证、拷贝控制和秘密通信等。数字水印被视做抵抗多媒体盗版的“最后一道防线”。因此从水印技术自身来说,它具有广泛的应用前景和巨大的经济价值。
数字水印的一般框架图

数字水印的基本框架

一个典型的水印系统由嵌入器和检测器组成,如图所示。嵌入器(式(1))根据要传送的信息M生成真正的水印信号,并把它隐藏到媒体数据x中,得到含水印的信号y。为了安全起见,水印信号的生成通常依赖于密钥K。

y经过传输网络可能会有一定的信息损失,到达检测器端变成y′,这段通道对于嵌入器和检测器来说都是不可控、不可知的,可以称其为攻击通道(attack channel)。检测器负责从y′中提取信息,如式(2)。对于不需要宿主信号的检测,我们称为盲水印(blind watermarking),相反称为非盲水印(non-blind watermarking)。由于应用的需求,盲水印一直是研究的主流。

数字水印的特性

数字水印的思想虽然简单,但是要达到应用的目的,就必须满足一定的性能指标,其中相对重要的特性包括:

● 保真性(fidelity):又常称为不可见性,指的是水印嵌入导致宿主信号质量变化的程度。鉴于宿主信号多是多媒体数据供人们观赏,水印应具有很高的保真性,同时又增加了水印自身的安全。

● 鲁棒性(robustness):是指水印在媒体数据编辑、处理过程中的生存能力。媒体数据的各种操作会导致宿主信号信息损失,从而破坏水印完整性,像压缩、滤波、加噪、剪切、缩放和旋转等,也包括一些恶意的攻击。

● 信息容量(data payload):是指在一定保真度下,水印信号可传递的信息量。实际应用要求水印可传送多位信息。

● 安全性:在应用中总有人要嵌入、检测或剔除水印,而必须限制其他人做同样的操作,这就是水印的安全性。要实现安全,必须保密重要信息,比如通常使用密钥产生水印。

● 错警率:是指在不含水印的宿主信号中,错误地检测出水印的概率。很显然,只有错警率足够低,系统才能安全可靠地使用。

设计水印必须围绕上述性能指标选择合适的技术。有些特性之间是不相容的,像不可见性、鲁棒性和信息容量,必须做权衡的考虑。

由水印的保真性将其分为可见水印和不可见水印,顾名思义可见水印可通过人眼检测。由水印的鲁棒性又可分为鲁棒水印(robust watermarking)和脆弱水印(fragile watermarking)。鲁棒水印可以抵抗一定程度的信号处理;而脆弱水印的特点是任何对媒体信息的更改都会破坏水印的完整性,使水印检测不出来。所以说鲁棒水印是尽力保证水印信息的完整性,脆弱水印是尽力保证媒体信息的完整性,它们各有各的用途。还有一种水印介于二者之间,称为半脆弱水印,对一些操作鲁棒,但对重要数据特征的修改操作是脆弱的。

数字水印技术的进展

早期,水印设计者关注的是如何把信息隐藏在数字媒体中并不被发现。为此,水印信息被置于二进制数据的最低位中,这类方案被统称为最低有效位调制。很明显,最低有效位内的信息容易在常用的信号处理中丢失,水印的鲁棒性差。

随后,出现了大量空间域内的水印算法。水印嵌入不再是修改空间域内的单个点,而是一个点集或一个区域的特征,例如均值、方差、奇偶性等。Patchwork是这类方法的一个典型代表。它在图像空间随机选取n对像素点(ai, bi),并且对像素ai的亮度加d,bi的亮度减d,结果这两组像素点之间亮度差值的均值被修改为2d。该均值和统计假设检验理论可确定水印的有无。可是Patchwork能嵌入的信息量有限,而且对几何变换敏感。空间域内水印算法存在的共性问题是对图像处理的鲁棒性差。

相较于空间域,频谱则是一种很好的信号描述方法。低频分量代表了信号的平滑部分,是主体信息;高频分量表示信号的抖动部分,是边缘信息,信号的分析和处理非常直观方便。扩频水印引入了扩频通信理论,是一种非常流行的频率域内的水印设计思想。它将数字媒体视为信道,通常具有较宽的带宽,要嵌入的水印信号作为发射信号,带宽较窄。可以先将水印扩展到多个频率点上,再与媒体信号叠加。这样,每个频率分量内只含有微小能量的水印,既保证了不可见性,同时要破坏水印,则必须在每个频率上叠加幅值很高的噪声。这一思想首先被应用到DCT域内,之后又被推广到傅立叶变换域和小波域内。另外,为了兼顾水印的保真性,人类感知模型被用于控制每个频率点上水印的能量,使其不至于破坏信号质量,从而形成了一类自适应的扩频水印。

另一种重要的水印模型是把水印看成是已知边带信息的通信。边带信息指的是嵌入器端已知的信息,包括媒体数据。嵌入器应该充分利用边带信息,尽可能提高水印正确检测的概率。这对水印的设计有重要的指导意义,它说明含水印的宿主信号应该选择在可检测到水印的区域,同时保证一定的保真度。

当前,水印研究的热点是探讨媒体信号中能嵌入并可靠检测的最大信息量,它应用了已知边带信息的通信模型以及信息论的知识。水印算法的研究则侧重于针对压缩域,即JPEG、MPEG等压缩标准,因为压缩是信息传输中必须采用的技术。

数字水印的攻击技术

对媒体数据的各种编辑和修改常常导致信息损失,又由于水印与媒体数据紧密结合,所以也会影响到水印的检测和提取,我们把这些操作统称为攻击。水印的攻击技术可以用来测试水印的性能,它是水印技术发展的一个重要方面。如何提高水印的鲁棒性,抵抗攻击,是水印设计者最为关注的问题。

第一代水印性能评价系统Stirmark囊括了大量的信号和图像处理操作,它们可以分为:

● 去除水印攻击(Removal attack):主要包括A/D、D/A转换、去噪、滤波、直方图修改、量化和有损压缩等。这些操作造成了媒体数据的信息损失,特别是压缩,能在保证一定信息质量的前提下,尽可能多地剔出冗余,使得水印被去掉。

● 几何攻击(Geometrical attack):主要包括各种几何变换,例如旋转、平移、尺度变换、剪切、删除行或列、随机几何变换等。这些操作使得媒体数据的空间或时间序列的排布发生变化,造成水印的不可检测,因此也叫异步攻击。

● 共谋攻击:攻击者利用同一条媒体信息的多个含水印拷贝,使用统计方法构造出不含水印的媒体数据。

● 重复嵌入攻击:攻击者在已嵌入他人水印的媒体数据中嵌入自己的版权信息,从而造成版权纠纷。

第二代水印攻击系统由Voloshynovskiy提出,其核心思想是利用合理的媒体数据统计模型和最大后验概率来估计水印或者原始媒体信号,从而将水印剔除。

对攻击技术的分析和研究促进了水印技术的革新,但也为水印自身提出了一个又一个挑战。当前,还不存在一种算法能够抵抗所有的攻击,特别是几何攻击,是学术界公认的最困难的问题,目前还没有成熟的方案。

数字水印产品

20世纪90年代末期国际上开始出现一些水印产品。美国的Digimarc公司率先推出了第一个用于静止图像版权保护的数字水印软件,而后又以插件形式将该软件集成到Adobe公司的Photoshop和Corel Draw图像处理软件中。AlpVision公司推出的LavelIt软件,能够在任何扫描的图片中隐藏若干字符,用于文档的保护与跟踪。MediaSec公司的SysCop用水印技术来保护多媒体内容,欲杜绝非法拷贝、传播和编辑。

美国版权保护技术组织(CPTWG)成立了专门的数据隐藏小组(DHSG)来制定版权保护水印的技术标准。他们提出了一个5C系统,用于DVD的版权保护。IBM公司将数字水印用于数字图书馆的版权保护系统中。许多国际知名的商业集团,如韩国的三星、日本的NEC等,也都设立了DRM技术开发项目。另外,当前还有一些潜在的应用需求,例如软件的搜索和下载数量的统计、网页安全预警、数字电视节目的保护和机密文档的防遗失等。

一些国际标准中已结合了数字水印或者为其预留了空间。SDMI的目标是为音乐的播放、存储和发布提供一个开放的框架。SDMI规范中规定了多种音频文件格式,并联合加密和数字水印技术来实现版权保护。已经颁布的JPEG2000国际标准中,为数字水印预留了空间。即将颁布的数字视频压缩标准MPEG-4(ISO/IEC 14496),提供了一个知识产权管理和保护的接口,允许结合包括水印在内的版权保护技术。

在国内,政府对信息安全产业的发展极为重视。数字水印的研究得到了国家自然科学基金和“863”计划的资助。国内信息隐藏学术研讨会(CIHW)自1999年以来至今已成功举办了五届,有力地推动了水印技术的研究与发展。去年政府更颁布了《中华人民共和国电子签名法》,这给水印技术的应用提供了必要的法律依据。

尽管数字水印发展迅速,但离实际应用,还有一段距离要走。许多项目和研究都还处于起步和实验阶段,已出现的水印产品还不能完全满足使用需求。如今水印技术正在向纵深发展,一些基本的技术和法律问题正逐个得到解决。相信不久的将来,水印与其它DRM技术的结合,将彻底解决数字内容的管理和保护问题。

小资料2

多媒体数字版权保护的应用案例

在安全领域有20年发展历史的美商SafeNet推出的数字产权保护方案DMD是采用加密技术的DRM产品。SafeNet公司亚太地区副总裁陈泓应记者的要求介绍几个成功的应用案例。

DMD主要应用于音乐和铃声的下载、VOD、多媒体内容发布服务,以及最近的移动TV。基本来说,客户选择基于以下几点:基于电信级的性能,可以同时处理上千个用户;可以同步支持多种DRM技术,并且对未来的DRM技术有高支持能力;高互通性,确保服务器端与客户端能安全稳定地沟通;先进的授权能力,例如可以有效控制一个授权的使用量;高集成性,确保DRM的平台不是独立作业的,可以很容易地整合至服务器平台,与收费系统等结合。

在音乐下载方面,NPO是SafeNet在法国的客户。他们主要负责发布CD音乐及将发表的音乐放到FN@C的网络上供人付费下载。NPO将音乐内容做DRM处理后,将内容由FN@C (这是一个公开的入口网站)发布,提供给人付费下载。当终端用户付了钱,FN@C会将一部分的证明数据加密并提交给NPO,由NPO产生授权给此用户。

在VOD的应用层面,德国的Arcor公司是一家ISP供货商。透过DRM解决方案,Arcor将影音内容加密,透过互联网和Cable给客户做使用者付费的服务。客户付了钱,Arcor由SafeNet的DRM解决方案产生正式授权,让客户享用影音服务。

在3G的应用方面,英国的BT LiftTime公司也采用SafeNet的DMD方案。BT LifeTime向内容供货商购买cable TV的内容(如运动节目或音乐节目等),并将此内容转成dab格式,经过DMD加密并放到其平台,再转卖给无线运营商,提供移动装置用户直接付费下载内容。通过SafeNet DMD将授权提供给已经付费的客户。

(计算机世界报 2005年11月14日 第44期 B6、B7)

MPEG-4视频数字水印技术的设计与实现
武汉大学信号与信息处理实验室(430079) 裘风光 李富平
随着信息技术和计算机网络的飞速发展,人们不但可以通过互联网和CD-ROM方便快捷地获得多媒体信息,还可以得到与原始数据完全相同的复制品,由此引发的盗版问题和版权纷争已成为日益严重的社会问题。因此,数字多媒体产品的水印处理技术已经成为近年来研究的热点领域之一。
虽然数字水印技术近几年得到长足发展,但方向主要集中于静止图像。由于包括时间域掩蔽效应等特性在内的更为精确的人眼视觉模型尚未完全建立,视频水印技术的发展滞后于静止图像水印技术。另一方面,由于针对视频水印的特殊攻击形式的出现,为视频水印提出了一些区别于静止图像水印的独特要求。

本文分析了MPEG-4视频结构的特点种基于扩展频谱的视频数字水印改进方案应用实例。

1视频数字水印技术简介

1.1数字水印技术介绍

数字水印技术通过一定的算法将一些标志性信息直接嵌入到多媒体内容当中,但不影响原内容的价值和使用,并且不能被人的感知系统觉察或注意到。与传统的加密技术不同,数字水印技术并不能阻止盗版活动的发生,但可以判别对象是否受到保护,监视被保护数据的传播,鉴别真伪,解决版权纠纷并为法庭提供认证证据。为了给攻击者增加去除水印的难度,目前大多数水印制作方案都采用密码学中的加密体系来加强,在水印嵌入、提取时采用一种密钥,甚至几种密钥联合使用。水印嵌入和提取的一般方法如图1所示。

1.2视频数字水印设计应考虑的几个方面

·水印容量:嵌入的水印信息必须足以标识多媒体内容的购买者或所有者。

·不可察觉性:嵌入在视频数据中的数字水印应该不可见或不可察觉。

·鲁棒性:在不明显降低视频质量的条件下,水印很难除去。

·盲检测:水印检测时不需要原始视频,因为保存所有的原始视频几乎是不可能的。

·篡改提示:当多媒体内容发生改变时,通过水印提取算法,能够敏感地检测到原始数据是否被篡改。

1.3视频数字水印方案选择

通过分析现有的数字视频编解码系统,可以将目前MPEG-4视频水印的嵌入与提取方案分为以下几类,如图2所示。

(1)视频水印嵌入方案一:水印直接嵌入在原始视频流中。此类方案的优点是:水印嵌入的方法较多,原则上数字图像水印方案均可应用于此。缺点是:

·会增加视频码流的数据比特率;

·经MPEG-4有损压缩后会丢失水印;

·会降低视频质量;

·对于已压缩的视频,需先进行解码,然后嵌入水印,再重新编码。

(2)视频水印嵌入方案二:水印嵌入在编码阶段的离散余弦变换(DCT)的直流系数(DC)中(量化后、预测前)。此类方案的优点是:

·水印仅嵌入在DCT系数中,不会增加视频流的数据比特率;

·易设计出抗多种攻击的水印;

·可通过自适应机制依据人的视觉特性进行调制,在得到较好的主观视觉质量的同时得到较强的抗攻击能力。

缺点是对于已压缩的视频,有一个部分解码、嵌入、再编码的过程。

(3)视频水印嵌入方案三:水印直接嵌入在MPEG-4压缩比特流中。优点是不需完全解码和再编码的过程,对整体视频信号的影响较小。缺点是:

·视频系统对视频压缩码率的约束将限制水印的嵌入量;

·水印的嵌入可能造成对视频解码系统中运动补偿环路的不良影响;

·该类算法设计具有一定的复杂度。

2 MPEG-4视频水印的实现

基于上述的各种方案,本文在方案二的基础上提出了一种针对MPEG-4视频编码系统的扩展频谱数字水印技术改进方案,将扩频调制后的水印信息嵌入到视频流IVOP(Intra Video Object Plane)中色度DCT直流系数的最低位。本方案不需要完全解码,大大减少了运算的
复杂度,提高了实时性。同时由于水印嵌入在直流系数中,在保证视频效果不失真的前提下,水印具有很强的鲁棒性。

2.1 MPEG-4视频的特点 MPEG-4视频编解码基于VOP(Video Object Plane)。

从时间上看,VOP分为内部VOP(1VOP)、前向因果预测VOP(PVOP)、双向非因果预测VOP(BVOP)、全景的灵影VOP(SVOP)。IVOP只用本身的信息进行编码;PVOP利用过去的参考VOP进行运动补偿的预测编码;BVOP利用过去和将来的参考VOP进行双向运动补偿的预测编码;SVOP一系列运动图像中的静止背景。因此IVOP的图像信息较独立,最适合嵌入水印信息。

从空间上看,它由若干个大小为16×16的宏块(Macro Block)组成,每个宏块包括大小为8×8的6个子块。其中4个亮度子块Y,1个色差子块U,1个色差子块V。IVOP编码基本流程如图3所示。

为了不受量化过程的影响,本方案将水印嵌入在量化后的DCT系数中,从而提高了水印生存的稳定性。在MPEG-4压缩算法中,DCT系数的量化是关键,它直接影响视频的质量和码流控制算法。为此,MPEG-4提供了一个供参考的标准量化表。该表根据人类视觉模型(HVS)建立。考虑到人眼对高频信息损失的敏感度较低频损失小很多,因此通常把水印嵌入到中低频信息中,提高了水印信息的鲁棒性。另外,根据人眼对亮度信息的变化比色度信息较敏感这一特性,为最大限度地保持视频质量,本方案将水印嵌入到色度(U子块)DCT系数中。由于DCT是目前多媒体视频压缩中被广泛采用的技术基础,因此基于DCT的视频水印方案具有显着的优势。将水印信息嵌入到IVOP色度量化后的DCT直流系数中,不但无需引入额外的变换以获取视频的频谱分布,且水印信息不受DCT系数量化带来的影响。

2.2视频数字水印算法与实现

在MPEG-4视频中,由于IVOP中色度子块的DCT直流系数是一个在视频流中始终存在且很鲁棒的参数,本方案将水印信息经m序列(最长线性反馈移存器序列)调制后嵌入到IVOP的色度子块DCT的直流系数中。这样水印信息在不影响视频效果的情况下难以去除,所以鲁棒性足够强。本方案采用扩频的方法,以方便有效地检测水印,抵抗各种攻击和干扰,保密性好。关键问题是色度DCT的直流系统是一个对视觉系统很敏感的参数,本方案在色度DCT的直流系数上加水印相当于对其加入微量干扰,必须使这种干扰低于一定的门限值,使人眼的视觉系统对视频中色度的微小变化感觉不到。经过试验将水印嵌入到IVOP的色度DCT的直流系数的最低位能满足要求。

2.2.1视频数字水印的嵌入

伪随机的扩展序列长度为255(28-1),每一水印信息位通过伪随机扩展序列的调制嵌入到相应的IVOP色度对应的DCT直流系数(量化后、预测前)的最低位,这样水印信息在不影响视频效果的情况下一般难以去除。同时,嵌入在直流系数的最低位,带来的误差非常小。

伪随机的扩展序列产生代码如下:

#define M_LEN 255
#define M_SERIES 8
for(I=0;i for(i=M_SERIES;i {
m[i]=m[i-1]+m[i-5]+m[I-6]+m[i-7]
m[i]=m[i]%2;
}
水印信息位扩展调制方式为:

·水印信息位为0,伪随机的扩展序列不变;

·水印信息位为1,伪随机的扩展序列取反。

这个过程可以用异或运算实现。代码如下:

Wmij=Wi^m[j];

/*每一水印信息位扩展调制成255位的扩展调制位*/
这里Wi表示水印信息码流,WMij表示水印信息扩展调制码流。设UDCij表示视频IVOP色度DCT的直流系数(量化后、DC预测计算之前)序列,为了方便,用一个字节表示一位二进制码流信息。

水印嵌入过程如下:

if(WMij) UDCij 1=1;

/*根据扩展调制后的码流嵌入水印信息*/

else UDCij&=0xFFFE;

2.2.2视频数字水印的提取

水印信息提取是水印信息嵌入的逆过程,代码如下:

if(inv_UDCij &1)inv_Wmij=1;
else inv_Wmij=0;

这里inv_UDCij表示带有水印信息的视频IVOP色度DCT的直流系数(反量化前、DC预测计算之后)序列;inv_WMij表示检测到的水印信息扩展调制码流。每个IVOP色度子块在解码时得到一位扩展调制的信号位,每连续255个扩展调制的信号位可解调得到1位水印
信息,具体分析如下:

用与原始伪随机序列结构相同且完全同步的序列与得到的连续255个扩展调制的信号接收序列进行异或运算,统计运算后1的个数记为OneCount。由于m序列的自相关函数只有两种取值(1和-1/(2n-1)),属于双值自相关序列。因此,如果数据未受到任何攻击和干扰,OneCount只有两种结果:255或0。当OneCount=255时,得到的水印信息位为1;当OneCount=0时,得到的水印信息位为0。如果数据受到攻击或干扰,OneCount有多种结果。根据统计分析,当OneCount>127时,得到的水印信息位为1,并且这255个IVOP色度子块中有(255-OneCount)个子块受到攻击或干扰;当OneCount<127时,得到的水印信息位为0,并且这255个IVOP色度子块中有OneCount个子块受到攻击或干扰。这样既可以统计总共有多少视频IVOP色度子块受到攻击或干扰,同时又能极强地恢复出原始水印信息。

3试验结果分析

试验结果表明,m序列的长度越长,检测效果越好,但能够嵌入的水印信息量也相应地减少。本方案中水印只嵌入在视频的IVOP中,不修改PVOP和BVOP,对帧跳跃与帧删除攻击稳健,因为IVOP不可以被跳跃或删除。同时,由于水印信息嵌入在DCT的直流系数中,而直流系数的变化对视频效果会有较大的影响,所以采取将水印信息嵌入到色度子块DCT直流系数的最低位。这样不仅使水印嵌入计算的复杂度大为降低,为MPEG-4编解码节省了时间,还可取得良好的视频效果,达到了不可觉察性。从统计角度看也不会增加视频码流。另外,水印提取时无需原始视频。若水印信息未受到攻击,则本方案可准确地提取到原始视频的完全水印;若水印信息受到攻击,根据扩频解调性质,本方案可以最大限度地恢复出原始水印信息,并统计出有多少个IVOP色度子块受到攻击。

由于DCT是目前多媒体视频压缩几大标准(H.261、H.263、MPEG-4等)共同采用的技术基础。因此基于DCT的水印方案在视频压缩中具有非常重要的研究意义和应用前景。本文在此基础上提出了一个基于扩展频谱的MPEG-4视频数字水印方案。实践证明,在不需要原始视频的情况下,本方案能敏感地检测到数据是否被篡改或破坏,并具有良好的稳定性和鲁棒性,从而提供了知识产权的保护,防止非法获取。

本文摘自《电子技术应用》

应用:数字水印

消息认证与数字签名可以应用到数字水印中。

传统水印用来证明纸币或纸张上内容的合法性,数字水印(digital watermark)用以证明一个数字产品的拥有权、真实性。数字水印是嵌在数字产品中的数字信息。可以是作者的序列号、公司标志、有特殊意义的文本等。

数字水印主要用于:阻止非法复制(间接的)、确定所有权(作者、发行人、分发商、合法的最终用户)、确定作品的真实性和完整性(是否伪造、被篡改)、证实收件人、不可否认的传送、法庭证据的验证、赝品甄别、识别文件来源与版本、Web网络巡逻监视盗贼等。

传统水印是人眼可以看得见的,而数字水印可以分为可感知的(Perceptible)和不易感知的(Inperceptible)两种。

可感知的数字水印,主要用于当场声明对产品的所有权、着作权及来源,起到一个宣传广告或约束的作用。可感知水印一般为较淡的或半透明的不碍观瞻的图案;比如电视台节目播放的同时,在某个角落插上电视台的半透明标志。另一个用途是为了在线分发作品,比如先将一个低分辨率的有可见水印的图像免费送人,其水印往往是拥有者或卖主的信息,它提供了寻找原高分辨率作品的线索,若想得到高分辨率的原作品则需付费。有些公司在产品出售前为了在网络上宣传其产品,先做上可逆可见水印分发,付费购买时,再用专用软件将可见水印去掉,加入不可见水印(发行人、分发商、最终用户等的信息)。可见水印还有另一些用途,那就是为了节约带宽、存储空间等原因,在VCD、DVD等电影拷贝中用嵌入不可见水印的方式配上多种语言的副标题和字幕,待播放时由硬件根据需要实时地解出每一帧中的水印文字,将其显示在屏幕上。

可见水印在某些产品中或多或少降低了作品的观赏价值,使其用途相对受到一定限制。不易感知的水印的应用层次更高,制作难度更大。

不易感知的数字水印就像隐形墨水技术中的看不见的文字,隐藏在数字产品中。水印的存在要以不破坏原数据的欣赏价值、使用价值为原则。数字水印按照某种方式植入被保护的信息中,在产生版权纠纷时,通过相应的算法提取出该数字水印,从而验证版权的归属。被保护的信息可以是图像、声音、视频或一般性的电子文档等。为了给攻击者增加去除水印的难度,大多数水印制作方案都在水印的嵌入、提取时使用密钥。

图5.7水印的嵌入与提取

数字水印技术虽然不能阻止盗版活动的发生,但它可以判别对象是否受到保护,监视被保护数据的传播、真伪鉴别和非法拷贝、解决版权纠纷并为法庭提供证据。

数字水印的设计需要考虑以下几个方面:

鲁棒性:是指被保护的信息经过某种改动后抵抗隐藏信息丢失的能力。例如传输过程中的信道噪音、滤波操作、重采样、有损编码压缩、D/ A或 A/ D转换、图像的几何变换(如平

‘柒’ 数字水印和图像处理

我是做隐写的,是和水印并行的一种隐藏技术,对水印也有了解。
水印依据载体可以分成三种:音频水印、图像水印、视频水印。图像水印就是数字水印和图像处理结合的图像处理技术。多看水印方面的文章吧,文章从高校学校图书馆的电子资源里可以免费下载。建议先看一些中文、英文关于水印概况介绍的文章,然后再看最近一些流行的水印算法。总之,没有几十篇论文的积累,你对水印还是不够了解。
想做毕业设计,先从读论文开始。等理解了什么是水印,并对当前流行的算法了解了。你自己可以试着对这些算法做一些符合你自己想法的改进,从新设计一种算法,一般就可以完成你的毕业设计了。
个人一点拙见,仅作参考。

‘捌’ 求数字水印国内外研究现状及发展趋势(含文献综述)

文章编号:1005 - 0523(2005) 02 - 0063 - 04
数字水印及其发展研究
石红芹,谢 昕
(华东交通大学信息工程学院,江西南昌330013)
摘要:首先对数字水印的特征进行了分析,阐述了数字水印技术的基本原理,对目前比较流行的水印算法进行了分类和详细地讨论,最后指出目前水印技术存在的局限并对其发展进行了展望.
关键词:版权保护;数字水印;水印算法
中图分类号:TP391 文献标识码:A
1 引 言
近年来,随着数字化技术的进步和Internet 的迅速发展,多媒体信息的交流达到了前所未有的深度和广度,其发布形式愈加丰富了. 网络发布的形式逐渐成为一种重要的形式,伴随而来的是多媒体数据的版权保护问题. 因此多媒体信息版权保护问题成了一项重要而紧迫的研究课题. 为了解决这一难题,近几年国际上提出了一种新的有效的数字信息产品版权保护和数据安全维护的技术一一数字水印技术. 数字水印技术通过在原始媒体数据中嵌入秘密信息———水印来证实该数据的所有权归属. 水印可以是代表所有权的文字、产品或所有ID、二维图像,视频或音频数据、随机序列等. 主要应用于:媒体所有权的认定. 即辨认所有权信息,媒体合法用户信息; 媒体的传播跟算法研究. 该子模块的研究为解决网络制造产品版权保护问题奠定了基础数字水印技术,又称数字签名技术,成为信息隐藏技术的一种重要研究分支,为实现有效的信息版权保护提供了一种重要的手段.
2 数字水印的基本原理
从图像处理的角度看,嵌入水印信号可以视为在强背景下迭加一个弱信号,只要迭加的水印信号强度低于人类视觉系统( Human Visual System ,HVS) 的对比度门限,HVS 就无法感到信号的存在.对比度门限受视觉系统的空间、时间和频率特性的影响. 因此通过对原始信号作一定的调整,有可能在不改变视觉效果的情况下嵌入一些信息,从数字通信的角度看,水印嵌入可理解为在一个宽带信道(载体图像) 上用扩频通信技术传输一个窄带信号(水印信号) . 尽管水印信号具有一定的能量,但分布到信道中任一频率上的能量是难以检测到的. 水印的译码(检测) 即是在有噪信道中弱信号的检测问题.
一般来说,为了使水印能有效地应用于版权保护中,水印必须满足如下特性:
1) 隐蔽性 水印在通常的视觉条件下应该是不可见的,水印的存在不会影响作品的视觉效果.
2) 鲁棒性 水印必须很难去掉(希望不可能去掉) ,当然在理论上任何水印都可以去掉,只要对水印的嵌入过程有足够的了解,但是如果对水印的嵌入只是部分了解的话,任何破坏或消除水印的企图都应导致载体严重的降质而不可用.
3) 抗窜改性 与抗毁坏的鲁棒性不同,抗窜改性是指水印一旦嵌入到载体中,攻击者就很难改变或伪造. 鲁棒性要求高的应用,通常也需要很强的抗窜改性. 在版权保护中,要达到好的抗窜改性是比较困难的.
4) 水印容量 嵌入的水印信息必须足以表示多媒体内容的创建者或所有者的标志信息,或是购买者的序列号. 这样在发生版权纠纷时,创建者或所有者的信息用于标示数据的版权所有者,而序列号用于标示违反协议而为盗版提供多媒体数据的用户.
5) 安全性 应确保嵌入信息的保密性和较低的误检测率. 水印可以是任何形式的数据,比如数值、文本、图像等. 所有的水印都包含一个水印嵌入系统和水印恢复系统. 水印的嵌入和提取过程分别
6) 低错误率 即使在不受攻击或者无信号失真的情况下,也要求不能检测到水印(漏检、false -negative) 以及不存在水印的情况下,检测到水印(虚检、false - positive) 的概率必须非常小.
3 数字水印算法
近几年来,数字水印技术研究取得了很大的进步,见诸于文献的水印算法很多,这里对一些典型的算法进行了分析.
3. 1 空间域算法
数字水印直接加载在原始数据上,还可以细分为如下几种方法[1~4 ] :
1) 最低有效位方法(LSB) 这是一种典型的空间域数据隐藏算法,L. F. Tumer 与R. G. Van Schyadel等先后利用此方法将特定的标记隐藏于数字音频和数字图像内. 该方法是利用原始数据的最低几位来隐藏信息(具体取多少位,以人的听觉或视觉系统无法察觉为原则) .LSB 方法的优点是有较大的信息隐藏量,但采用此方法实现的数字水印是很脆弱的,无法经受一些无损和有损的信息处理,而且如果确切地知道水印隐藏在几位LSB 中,数字水印很容易被擦除或绕过.
2) Patchwork 方法及纹理块映射编码方法
这两种方法都是Bender 等提出的. Patchwork 是一种基于统计的数字水印,其嵌入方法是任意选择N 对图像点,在增加一点亮度的同时,降低另一点的亮度值. 该算法的隐藏性较好,并且对有损的JPEG和滤波、压缩和扭转等操作具有抵抗能力,但仅适用于具有大量任意纹理区域的图像,而且不能完全自动完成.
3. 2 变换域算法
基于变换域的技术可以嵌入大量比特数据而不会导致可察觉的缺陷,往往采用类似扩频图像的技术来隐藏数字水印信息. 这类技术一般基于常用的图像变换,基于局部或是全部的变换,这些变换包括离散余弦变换(DCT) 、小波变换(WT) 、傅氏变换(FT 或FFT) 以及哈达马变换(Hadamard transform)等等. 其中基于分块的DCT 是最常用的变换之一,现在所采用的静止图像压缩标准JPEG也是基于分块DCT 的. 最早的基于分块DCT 的一种数字水印技术方案是由一个密钥随机地选择图像的一些分块,在频域的中频上稍稍改变一个三元组以隐藏二进制序列信息. 选择在中频分量编码是因为在高频编码易于被各种信号处理方法所破坏,而在低频编码则由于人的视觉对低频分量很敏感,对低频分量的改变易于被察觉. 该数字水印算法对有损压缩和低通滤波是稳健的. 另一种DCT 数字水印算法[5 ]是首先把图像分成8 ×8 的不重叠像素块,在经过分块DCT 变换后,即得到由DCT 系数组成的频率块,然后随机选取一些频率块,将水印信号嵌入到由密钥控制选择的一些DCT 系数中. 该算法是通过对选定的DCT 系数进行微小变换以满足特定的关系,以此来表示一个比特的信息. 在水印信息提取时,则选取相同的DCT 系数,并根据系数之间的关系抽取比特信息. 除了上述有代表性的变换域算法外,还有一些变换域数字水印方法,它们当中有相当一部分都是上述算法的改进及发展,这其中有代表性的算法是I. Podichuk 和ZengWenjun 提出的算法[6 ] . 他们的方法是基于静止图像的DCT 变换或小波变换,研究视觉模型模块返回数字水印应加载在何处及每处可承受的JND(Just Noticeable Difference ,恰好可察觉差别) 的量值(加载数字水印的强度上限) ,这种水印算法是自适应的.
3. 3 NEC 算法
该算法由NEC 实验室的Cox[5 ]等人提出,该算法在数字水印算法中占有重要地位,其实现方法是,首先以密钥为种子来产生伪随机序列,该序列具有高斯N(0 ,1) 分布,密钥一般由作者的标识码和图像的哈希值组成,其次对图像做DCT 变换,最后用伪随机高斯序列来调制(叠加) 该图像除直流分量外的1 000 个最大的DCT 系数. 该算法具有较强的鲁棒性、安全性、透明性等. 由于采用特殊的密钥,故可防止IBM 攻击,而且该算法还提出了增强水印鲁棒性和抗攻击算法的重要原则,即水印信号应该嵌入源数据中对人感觉最重要的部分,这种水
印信号由独立同分布随机实数序列构成,且该实数序列应具有高斯分布N(0 ,1) 的特征. 随后Podilchuk等利用人类视觉模型又对该算法进行了改进,从而提高了该算法的鲁棒性、透明性等.
3. 4 其他一些水印算法
1) 近年来,利用混沌映射模型实现数字水印、保密通信等成为混沌应用研究的热点. 特别是自从Cox 等借用通信技术中的扩频原理将水印信号嵌入到一些DCT 变换系数或者多层分解的小波变换系数以来,人们已经提出了一些混沌数字水印方法.水印的嵌入与检测是基于人类视觉系统(HVS) 的亮度掩蔽特性和纹理掩蔽特性,折衷水印的不可见性和鲁棒性之间的矛盾. 结果表明:该方法嵌入的水印具有不可见性和鲁棒性,并且这种基于密钥的混沌水印方法更好的抗破译性能.
2) 目前比较流行的还有一种基于盲水印检测的DWT 算法,该算法首先对原始图像进行小波变换,根据人类具有的视觉掩蔽特性对低频分量进行一定的量化,同时可不影响视觉效果,并对作为水印的图像进行压缩和二值化处理,形成一维的二值序列,根据二值序列的值对上述量化后的原始信号的低频分量进行视觉阈值范围内允许的修改,从而实现水印的嵌入. 水印提取过程是对含有水印的图像进行小波变换,对低频分量同样进行量化处理,为了增大算法的安全性,可以对水印形成的二值0 ,1 序列在嵌入前进一步进行伪随机序列调制,相应的在水印提取过程需要增加用伪随机序列解调的步骤. 这样,不知道伪随机序列的攻击者即使推测出水印的嵌入规律,也无法提取水印. 大大增加了水印系统的透明性和鲁棒性.
4 水印技术的局限
目前水印技术的局限,为了对版权保护中使用水印的成功可能性进行评估,看能否满足实际应用需求,就需要对水印技术有更多了解. 下面介绍数字水印方案普遍存在的一些局限:
1) 不知道能够隐藏多少位. 尽管非常需要知道指定大小载体信息上可以隐藏多少比特的水印信息,但这个问题还没有得到圆满解决. 事实上,对给定尺寸的图像或者给定时间的音频,可以可靠隐藏信息量的上界,目前还不清楚. 对图像水印,只能说目前使用的算法可以隐藏几百比特位的水印信息.
2) 还没有真正健壮的盲图像水印算法. 对图像水印,鲁棒性还是个问题. 目前还没有能够在经过所有普通图像处理变换后,仍能幸免的盲水印算法. 尤其是能够抵抗几何处理的攻击,被认为是很难实现的目标.
3) 所有者能去除标记. 迄今为止提出的所有盲图像水印,实际上都是可逆的. 已知水印的准确内容、以及水印的嵌入和检测算法,则总能在没有严重损坏资料的前提下,使水印不可读取. 目前还不清楚这个缺点在将来还是否存在;同时在设计版权保护系统时,必须考虑如下问题:一旦水印内容已知,则有可能去除水印或者部分水印.
此外,迄今为止提出的水印算法,其可逆性使人们提出极大的疑问,即设计能够抗篡改的健壮公开水印技术是否可能? 事实上,如果允许任何人读取水印,则任何人只要知道水印嵌入算法,就可以消除水印.
5 结 论
随着电子商务的加速发展和网络用户的直线增长,媒体的安全要求将更加迫切,作为版权保护和安全认证的数字水印技术具有极大的商业潜力,作为一门学科交叉的新兴的应用技术,它的研究涉及了不同学科研究领域的思想和理论,如数字信号处理、图像处理、信息论、通信理论、密码学、计算机科学及网络、算法设计等技术,以及公共策略和法律等问题,是近几年来国际学术界才兴起的一个前沿研究领域,得到了迅速的发展. 但数字水印技术仍然是一个未成熟的研究领域,还有很多问题需要解决,其理论基础依然薄弱. 随着一些先进的信号处理技术和密码设计思想的引进,必将日趋成熟且得到更为广泛的发展应用.
参考文献:
[1 ] Eepa Kunr. Dimitrios hatzinakos. Digital watermarking fortelltale tamper proofing and authentication [J ] . Proceeding of the IEEE. 1999 , 87(7) :1167~1180.
[2 ] 张春田,苏育挺. 信息产品的版权保护技术———数字水印[J ] . 电信科学,1998 ,14(12) :15~17.
[3 ] Bender W, Gruhl D. Techniques for data hiding[J ] . IBM sys2tem journal ,1996 ,35(3~4) :313~336.
[4 ] Cox I J , Killian J ,Leighton F T. Secure spread spectrum wa2termarking for multimedia[J ] . IEEE transactions on image pro2cessing ,1997 ,6(12) :1673~1687.
[5 ] Zhao J , Koch E. Embedding robust labels into images forright protection[A] . In : Proceedings of the knowright’95conference on intellectual property rights and new technologies[C] . Vienna , Austria , 1995. 241~251.
[6 ] Podilchud C I , Zeng W. Image - adaptive watermarking usingvisual model [J ] . IEEE journal on special areas in communica2tions ,1998 ,16(4) :525~539.

‘玖’ DCT域图像数字水印算法,新手,这个水印嵌入程序看不明白,谁能帮我把每条注释下Q282092728,谢谢了

M=256;%原图像长度
N=32;%水印图像长度
K=8; %图像分块大小
I=zeros(M,M);%创建一个零矩阵,用于存放载体图像
J=zeros(N,N); %创建一个零矩阵,用于存放水印图像
BLOCK=zeros(K,K);%创建一个零矩阵,用于存放图像分块
%显示水印图像
subplot(1,8,2);
J=imread('14','bmp'); %读入水印图像
imshow(J); %显示水印图像
title('水印图像');
%显示原图像
subplot(1,3,2);
I=imread('11','bmp'); %读入原始图像
imshow(I); %显示原始图像
title('原始公开图像');
%嵌入水印
tem=1;%创建变量tem,没用
for p=1:N%水印图像行循环
for q=1:N%水印图像列循环
x=(p-1)*K+1; %x为载体图像行坐标
y=(q-1)*K+1; %y为载体图像列坐标
BLOCK=I(x:x+K-1,y:y+K-1); %BLOCK为载体图像I的分块,分块大小为K*K,
%初始值为I(0:K-1,0:K-1)
BLOCK=dct2(BLOCK);%对BLOCK进行二维DCT变换,得到新的BLOCK即%DCT系数矩阵BLOCK
if J(p,q)==0%如果水印图像的第(p,q)个像素为0
a=-1;%嵌入参数为-1
else
a=1; %若如果水印图像的第(p,q)个像素为1嵌入参数为1
end
BLOCK(2,1)=BLOCK(2,1)*(1+a*0.01); %对载体图像的分块的DCT系数矩阵
%BLOCK
BLOCK=idct2(BLOCK);%对DCT系数矩阵进行反变换,得到嵌入水印后的载体
%图像分块BLOCK
I(x:x+K-1,y:y+K-1)=BLOCK;%用嵌入水印后的图像分块BLOCK代替载体图像
%的对应分块
End%水印图像列循环结束
End%水印图像行循环结束
%显示嵌入水印后的图像
subplot(1,3,3);
imshow(I);%显示嵌入水印后图像
title('嵌入水印后的图像');
imwrite(I,'embedded.bmp','bmp');%将嵌入水印后图像写成bmp文件
够详细吧,希望对你有用。

阅读全文

与可见水印算法python相关的资料

热点内容
鲁班锁解压吗 浏览:395
打包发送文件如何加密 浏览:213
centos解压缩zip 浏览:387
我的世界怎么用命令风块取消指令 浏览:1000
安卓软件请求超时怎么办 浏览:476
androidapp调用另一个app 浏览:621
数控铣床法兰克子程序编程 浏览:173
linux打包命令targz 浏览:996
抖音app是哪个 浏览:407
苹果app怎么上架 浏览:255
NA服务器地址 浏览:427
我的世界如何初始化服务器 浏览:97
哪个手机app天气预报最准 浏览:752
怎样把视频压缩至25m 浏览:570
vivox27文件夹怎么改变 浏览:727
新手玩狼人杀用什么app 浏览:615
pdf在线查看 浏览:954
安卓tv90如何关闭后台 浏览:683
php读取word乱码 浏览:755
minicom源码 浏览:1002