导航:首页 > 源码编译 > 背包问题算法代码

背包问题算法代码

发布时间:2022-08-17 16:13:29

㈠ 背包问题(C语言)

我一下别人的递归算法,假如你有时间限时的话,那我就用动态规划帮你重新code一个

#include <stdio.h>
#define N 100 //物品总种数不是常量,没法根据它来决定数组的长度,只有先定义个长度了
int n;//物品总种数
double limitW;//限制的总重量
double totV;//全部物品的总价值
double maxv;//解的总价值
int option[N];//解的选择
int cop[N];//当前解的选择
struct {//物品结构
double weight;
double value;
}a[N];
//参数为物品i,当前选择已经达到的重量和tw,本方案可能达到的总价值
void find(int i,double tw,double tv)
{
int k;
//物品i包含在当前方案的可能性
if(tw+a[i].weight <= limitW){
cop[i]=1;
if(i<n-1)find(i+1,tw+a[i].weight,tv);
else{
for(k=0;k<n;++k)
option[k]=cop[k];
maxv=tv;
}
}
cop[i]=0;
//物品i不包含在当前方案的可能性
if(tv-a[i].value>maxv){
if(i<n-1)find(i+1,tw,tv-a[i].value);
else{
for(k=0;k<n;++k)
option[k]=cop[k];
maxv=tv-a[i].value;
}
}
}
void main()
{
int k;
double w,v;
printf("输入物品种数:");
scanf("%d",&n);
printf("输入各物品的重量和价值:");
for(totV=0.0,k=0;k<n;++k){
scanf("%lf %lf",&w,&v);
a[k].weight = w;a[k].value = v;
totV += v;
}
printf("输入限制重量:");
scanf("%lf",&limitW);
maxv=0.0;
for(k=0;k<n;++k)cop[k]=0;
find(0,0.0,totV);
for(k=0;k<n;++k)
if(option[k])printf("%4d",k+1);
printf("总价值为: %2f",maxv);
}

㈡ 背包问题的C++代码

#include"stdio.h"
const int N=10; //设定物体个数
const int no=2;
#define weight 10 //限制质量
#define num 100
int d[num]; //总质量
int c[num][weight]; //对应的物体位置

void Best(int a[],int n)
{
int i,j,k=0,ko=2,m;
for(i=0;i<n-1;i++) //两个物体总质量不超过限制质量所有可能
{
for(j=i+1;j<n;j++)
if((a[i]+a[j])<=weight)
{
d[k]=a[i]+a[j];
c[k][0]=i+1;c[k][1]=j+1;
k++;
}
}
int k0=0,k1=k;
while(ko) //ko是物体个数的统计,当不能再多时赋值为0,退出循环
{
for(i=k0;i<k1;i++) //多个物体总质量不超过限制质量所有可能
{
for(j=c[i][ko-1];j<n;j++)
if((d[i]+a[j])<=weight)
{
d[k]=d[i]+a[j];
for(m=0;m<ko;m++)
c[k][m]=c[i][m];
c[k][m]=j+1;
k++;
}
}if(k==k1)ko=-1; //物体个数不能再多时
k0=k1;k1=k;ko++;
}
int ok=0;
for(i=0;i<k;i++)
{
if(d[i]==weight)
{
int m=0;
while(c[i][m]!=0)
{m++;}
if(m==no)
{
m=0;
while(c[i][m]!=0)
{
printf("%d\t",a[c[i][m]-1]);
m++;ok++;
}printf("\n");
}
}

}
if(!ok) printf("No\n");
}

void main()
{
int a[N];
printf("请依次输入%d个物体的质量\n",N);
for(int i=0;i<N;i++)
scanf("%d",&a[i]);
for(i=0;i<N;i++)
printf("物体%2d质量:%d\t",i+1,a[i]);
Best(a,N);
}

相应的字母没有完全按照你这题目来,希望你能看懂!

㈢ 0-1背包问题的多种解法代码(动态规划、贪心法、回溯法、分支限界法)

一.动态规划求解0-1背包问题
/************************************************************************/
/* 0-1背包问题:
/* 给定n种物品和一个背包
/* 物品i的重量为wi,其价值为vi
/* 背包的容量为c
/* 应如何选择装入背包的物品,使得装入背包中的物品
/* 的总价值最大?
/* 注:在选择装入背包的物品时,对物品i只有两种选择,
/* 即装入或不装入背包。不能将物品i装入多次,也
/* 不能只装入部分的物品i。
/*
/* 1. 0-1背包问题的形式化描述:
/* 给定c>0, wi>0, vi>0, 0<=i<=n,要求找到一个n元的
/* 0-1向量(x1, x2, ..., xn), 使得:
/* max sum_{i=1 to n} (vi*xi),且满足如下约束:
/* (1) sum_{i=1 to n} (wi*xi) <= c
/* (2) xi∈{0, 1}, 1<=i<=n
/*
/* 2. 0-1背包问题的求解
/* 0-1背包问题具有最优子结构性质和子问题重叠性质,适于
/* 采用动态规划方法求解
/*
/* 2.1 最优子结构性质
/* 设(y1,y2,...,yn)是给定0-1背包问题的一个最优解,则必有
/* 结论,(y2,y3,...,yn)是如下子问题的一个最优解:
/* max sum_{i=2 to n} (vi*xi)
/* (1) sum_{i=2 to n} (wi*xi) <= c - w1*y1
/* (2) xi∈{0, 1}, 2<=i<=n
/* 因为如若不然,则该子问题存在一个最优解(z2,z3,...,zn),
/* 而(y2,y3,...,yn)不是其最优解。那么有:
/* sum_{i=2 to n} (vi*zi) > sum_{i=2 to n} (vi*yi)
/* 且,w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 进一步有:
/* v1*y1 + sum_{i=2 to n} (vi*zi) > sum_{i=1 to n} (vi*yi)
/* w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 这说明:(y1,z2,z3,...zn)是所给0-1背包问题的更优解,那么
/* 说明(y1,y2,...,yn)不是问题的最优解,与前提矛盾,所以最优
/* 子结构性质成立。
/*
/* 2.2 子问题重叠性质
/* 设所给0-1背包问题的子问题 P(i,j)为:
/* max sum_{k=i to n} (vk*xk)
/* (1) sum_{k=i to n} (wk*xk) <= j
/* (2) xk∈{0, 1}, i<=k<=n
/* 问题P(i,j)是背包容量为j、可选物品为i,i+1,...,n时的子问题
/* 设m(i,j)是子问题P(i,j)的最优值,即最大总价值。则根据最优
/* 子结构性质,可以建立m(i,j)的递归式:
/* a. 递归初始 m(n,j)
/* //背包容量为j、可选物品只有n,若背包容量j大于物品n的
/* //重量,则直接装入;否则无法装入。
/* m(n,j) = vn, j>=wn
/* m(n,j) = 0, 0<=j<wn
/* b. 递归式 m(i,j)
/* //背包容量为j、可选物品为i,i+1,...,n
/* //如果背包容量j<wi,则根本装不进物品i,所以有:
/* m(i,j) = m(i+1,j), 0<=j<wi
/* //如果j>=wi,则在不装物品i和装入物品i之间做出选择
/* 不装物品i的最优值:m(i+1,j)
/* 装入物品i的最优值:m(i+1, j-wi) + vi
/* 所以:
/* m(i,j) = max {m(i+1,j), m(i+1, j-wi) + vi}, j>=wi
/*
/************************************************************************/

#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
template <typename Type>
void Knapsack(Type* v, int *w, int c, int n, Type **m)
{
//递归初始条件
int jMax = min(w[n] - 1, c);
for (int j=0; j<=jMax; j++) {
m[n][j] = 0;
}

for (j=w[n]; j<=c; j++) {
m[n][j] = v[n];
}

//i从2到n-1,分别对j>=wi和0<=j<wi即使m(i,j)
for (int i=n-1; i>1; i--) {
jMax = min(w[i] - 1, c);
for (int j=0; j<=jMax; j++) {
m[i][j] = m[i+1][j];
}
for (j=w[i]; j<=c; j++) {
m[i][j] = max(m[i+1][j], m[i+1][j-w[i]]+v[i]);
}
}

m[1][c] = m[2][c];
if (c >= w[1]) {
m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);
}

}

template <typename Type>
void TraceBack(Type **m, int *w, int c, int n, int* x)
{
for (int i=1; i<n; i++) {
if(m[i][c] == m[i+1][c]) x[i] = 0;
else {
x[i] = 1;
c -= w[i];
}
}
x[n] = (m[n][c])? 1:0;
}

int main(int argc, char* argv[])
{
int n = 5;
int w[6] = {-1, 2, 2, 6, 5, 4};
int v[6] = {-1, 6, 3, 5, 4, 6};
int c = 10;

int **ppm = new int*[n+1];
for (int i=0; i<n+1; i++) {
ppm[i] = new int[c+1];
}

int x[6];

Knapsack<int>(v, w, c, n, ppm);
TraceBack<int>(ppm, w, c, n, x);

return 0;
}
二.贪心算法求解0-1背包问题
1.贪心法的基本思路:
——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。
该算法存在问题:
1).不能保证求得的最后解是最佳的;
2).不能用来求最大或最小解问题;
3).只能求满足某些约束条件的可行解的范围。

实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步 do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解;

2.例题分析

1).[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30

分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占空间最小的物品装入是否能得到最优解?
(3)每次选取单位容量价值最大的物品,成为解本题的策略。

<程序代码:>(环境:c++)
#include<iostream.h>
#define max 100 //最多物品数
void sort (int n,float a[max],float b[max]) //按价值密度排序
{
int j,h,k;
float t1,t2,t3,c[max];
for(k=1;k<=n;k++)
c[k]=a[k]/b[k];
for(h=1;h<n;h++)
for(j=1;j<=n-h;j++)
if(c[j]<c[j+1])
{t1=a[j];a[j]=a[j+1];a[j+1]=t1;
t2=b[j];b[j]=b[j+1];b[j+1]=t2;
t3=c[j];c[j]=c[j+1];c[j+1]=t3;
}
}
void knapsack(int n,float limitw,float v[max],float w[max],int x[max])
{float c1; //c1为背包剩余可装载重量
int i;
sort(n,v,w); //物品按价值密度排序
c1=limitw;
for(i=1;i<=n;i++)
{
if(w[i]>c1)break;
x[i]=1; //x[i]为1时,物品i在解中
c1=c1-w[i];
}
}
void main()
{int n,i,x[max];
float v[max],w[max],totalv=0,totalw=0,limitw;
cout<<"请输入n和limitw:";
cin>>n >>limitw;
for(i=1;i<=n;i++)
x[i]=0; //物品选择情况表初始化为0
cout<<"请依次输入物品的价值:"<<endl;
for(i=1;i<=n;i++)
cin>>v[i];
cout<<endl;
cout<<"请依次输入物品的重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<endl;
knapsack (n,limitw,v,w,x);
cout<<"the selection is:";
for(i=1;i<=n;i++)
{
cout<<x[i];
if(x[i]==1)
totalw=totalw+w[i];
}
cout<<endl;
cout<<"背包的总重量为:"<<totalw<<endl; //背包所装载总重量
cout<<"背包的总价值为:"<<totalv<<endl; //背包的总价值
}
三.回溯算法求解0-1背包问题
1.0-l背包问题是子集选取问题。
一般情况下,0-1背包问题是NP难题。0-1背包
问题的解空间可用子集树表示。解0-1背包问题的回溯法与装载问题的回溯法十分类
似。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。当
右子树有可能包含最优解时才进入右子树搜索。否则将右子树剪去。设r是当前剩余
物品价值总和;cp是当前价值;bestp是当前最优价值。当cp+r≤bestp时,可剪去右
子树。计算右子树中解的上界的更好方法是将剩余物品依其单位重量价值排序,然后
依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。由此得到的价值是
右子树中解的上界。
2.解决办法思路:
为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考
察各物品即可。在实现时,由bound计算当前结点处的上界。在搜索解空间树时,只要其左儿子节点是一个可行结点,搜索就进入左子树,在右子树中有可能包含最优解是才进入右子树搜索。否则将右子树剪去。

回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
2.算法框架:
a.问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。
b.回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
3.运用回溯法解题通常包含以下三个步骤:
a.针对所给问题,定义问题的解空间;
b.确定易于搜索的解空间结构;
c.以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;
#include<iostream>

using namespace std;

class Knap
{
friend int Knapsack(int p[],int w[],int c,int n );

public:
void print()
{

for(int m=1;m<=n;m++)
{
cout<<bestx[m]<<" ";
}
cout<<endl;
};

private:
int Bound(int i);
void Backtrack(int i);

int c;//背包容量
int n; //物品数
int *w;//物品重量数组
int *p;//物品价值数组
int cw;//当前重量
int cp;//当前价值
int bestp;//当前最优值
int *bestx;//当前最优解
int *x;//当前解

};

int Knap::Bound(int i)
{
//计算上界
int cleft=c-cw;//剩余容量
int b=cp;
//以物品单位重量价值递减序装入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//装满背包
if(i<=n)
b+=p[i]/w[i]*cleft;
return b;
}

void Knap::Backtrack(int i)
{
if(i>n)
{
if(bestp<cp)
{
for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子树
{
x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
{
x[i]=0;
Backtrack(i+1);
}

}

class Object
{
friend int Knapsack(int p[],int w[],int c,int n);
public:
int operator<=(Object a)const
{
return (d>=a.d);
}

private:
int ID;
float d;
};

int Knapsack(int p[],int w[],int c,int n)
{
//为Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n];
for(i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)
return P;//装入所有物品
//依物品单位重量排序
float f;
for( i=0;i<n;i++)
for(int j=i;j<n;j++)
{
if(Q[i].d<Q[j].d)
{
f=Q[i].d;
Q[i].d=Q[j].d;
Q[j].d=f;
}

}

Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
K.print();
delete [] Q;
delete [] K.w;
delete [] K.p;
return K.bestp;

}

void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
char k;
cout<<"0-1背包问题——回溯法 "<<endl;
cout<<" by zbqplayer "<<endl;
while(k)
{
cout<<"请输入背包容量(c):"<<endl;
cin>>c;
cout<<"请输入物品的个数(n):"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;

cout<<"请输入物品的价值(p):"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];

cout<<"请输入物品的重量(w):"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];

cout<<"最优解为(bestx):"<<endl;
cout<<"最优值为(bestp):"<<endl;
cout<<Knapsack(p,w,c,n)<<endl;
cout<<"[s] 重新开始"<<endl;
cout<<"[q] 退出"<<endl;
cin>>k;
}
四.分支限界法求解0-1背包问题
1.问题描述:已知有N个物品和一个可以容纳M重量的背包,每种物品I的重量为WEIGHT,一个只能全放入或者不放入,求解如何放入物品,可以使背包里的物品的总效益最大。

2.设计思想与分析:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。

#include <iostream.h>

struct good
{
int weight;
int benefit;
int flag;//是否可以装入标记
};

int number=0;//物品数量
int upbound=0;
int curp=0, curw=0;//当前效益值与重量
int maxweight=0;
good *bag=NULL;

void Init_good()
{
bag=new good [number];

for(int i=0; i<number; i++)
{
cout<<"请输入第件"<<i+1<<"物品的重量:";
cin>>bag[i].weight;
cout<<"请输入第件"<<i+1<<"物品的效益:";
cin>>bag[i].benefit;
bag[i].flag=0;//初始标志为不装入背包
cout<<endl;
}

}

int getbound(int num, int *bound_u)//返回本结点的c限界和u限界
{
for(int w=curw, p=curp; num<number && (w+bag[num].weight)<=maxweight; num++)
{
w=w+bag[num].weight;
p=w+bag[num].benefit;
}

*bound_u=p+bag[num].benefit;
return ( p+bag[num].benefit*((maxweight-w)/bag[num].weight) );
}

void LCbag()
{
int bound_u=0, bound_c=0;//当前结点的c限界和u限界

for(int i=0; i<number; i++)//逐层遍历解树决定是否装入各个物品
{
if( ( bound_c=getbound(i+1, &bound_u) )>upbound )//遍历左子树
upbound=bound_u;//更改已有u限界,不更改标志

if( getbound(i, &bound_u)>bound_c )//遍历右子树
//若装入,判断右子树的c限界是否大于左子树根的c限界,是则装入
{
upbound=bound_u;//更改已有u限界
curp=curp+bag[i].benefit;
curw=curw+bag[i].weight;//从已有重量和效益加上新物品
bag[i].flag=1;//标记为装入
}
}

}

void Display()
{

cout<<"可以放入背包的物品的编号为:";
for(int i=0; i<number; i++)
if(bag[i].flag>0)
cout<<i+1<<" ";
cout<<endl;
delete []bag;
}

㈣ 背包问题的算法

1)登上算法
用登山算法求解背包问题 function []=DengShan(n,G,P,W) %n是背包的个数,G是背包的总容量,P是价值向量,W是物体的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%输入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩余容量 j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('装包的方法是');disp(X);disp(X.*W2);disp('总的价值是:');disp(P*X');

时间复杂度是非指数的

2)递归法
先看完全背包问题
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,
每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.
求旅行者能获得的最大总价值。
本问题的数学模型如下:
设 f(x)表示重量不超过x公斤的最大价值,
则 f(x)=max{f(x-i)+c[i]} 当x>=w[i] 1<=i<=n
可使用递归法解决问题程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
说明:当m不大时,编程很简单,但当m较大时,容易超时.
4.2 改进的递归法
改进的的递归法的思想还是以空间换时间,这只要将递归函数计算过程中的各个子函数的值保存起来,开辟一个
一维数组即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
3)贪婪算法
改进的背包问题:给定一个超递增序列和一个背包的容量,然后在超递增序列中选(只能选一次)或不选每一个数值,使得选中的数值的和正好等于背包的容量。

代码思路:从最大的元素开始遍历超递增序列中的每个元素,若背包还有大于或等于当前元素值的空间,则放入,然后继续判断下一个元素;若背包剩余空间小于当前元素值,则判断下一个元素
简单模拟如下:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{/*产生超递增序列*/
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{/*输出当前的超递增序列*/
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{/*背包问题求解*/
int i;
long r=value;
for(i=count-1;i>=0;i--)/*遍历超递增序列中的每个元素*/
{
if(r>=array[i])/*如果当前元素还可以放入背包,即背包剩余空间还大于当前元素*/
{
r=r-array[i];
cankao[i]=1;
}
else/*背包剩余空间小于当前元素值*/
cankao[i]=0;
}
}

void main()
{
long array[N];
int cankao[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)/*所有已经选中的元素之和*/
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
贪婪算法的另一种写法,beibao函数是以前的代码,用来比较两种算法:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{
int i;
long r=value;
for(i=count-1;i>=0;i--)
{
if(r>=array[i])
{
r=r-array[i];
cankao[i]=1;
}
else
cankao[i]=0;
}
}

int beibao1(long array[],int cankao[],long value,int n)
{/*贪婪算法*/
int i;
long value1=0;
for(i=n-1;i>=0;i--)/*先放大的物体,再考虑小的物体*/
if((value1+array[i])<=value)/*如果当前物体可以放入*/
{
cankao[i]=1;/*1表示放入*/
value1+=array[i];/*背包剩余容量减少*/
}
else
cankao[i]=0;
if(value1==value)
return 1;
return 0;
}

void main()
{
long array[N];
int cankao[N]={0};
int cankao1[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
printf("\nSecond method:\n");
if(beibao1(array,cankao1,value,N)==1)
{
for(i=0;i<N;i++)
if(cankao1[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}

4)动态规划算法

解决0/1背包问题的方法有多种,最常用的有贪婪法和动态规划法。其中贪婪法无法得到问题的最优解,而动态规划法都可以得到最优解,下面是用动态规划法来解决0/1背包问题。

动态规划算法与分治法类似,其基本思想是将待求解问题分解成若干个子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的,若用分治法解这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费过多的时间。动态规划法又和贪婪算法有些一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。不同的是,在贪婪算法中,每采用一次贪婪准则便做出一个不可撤回的决策,而在动态规划中,还要考察每个最优决策序列中是否包含一个最优子序列。

0/1背包问题

在0 / 1背包问题中,需对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示选取物品i) 取得最大值。
在该问题中需要决定x1 .. xn的值。假设按i = 1,2,...,n 的次序来确定xi 的值。如果置x1 = 0,则问题转变为相对于其余物品(即物品2,3,.,n),背包容量仍为c 的背包问题。若置x1 = 1,问题就变为关于最大背包容量为c-w1 的问题。现设r?{c,c-w1 } 为剩余的背包容量。
在第一次决策之后,剩下的问题便是考虑背包容量为r 时的决策。不管x1 是0或是1,[x2 ,.,xn ] 必须是第一次决策之后的一个最优方案,如果不是,则会有一个更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一个更好的方案。
假设n=3, w=[100,14,10], p=[20,18,15], c= 116。若设x1 = 1,则在本次决策之后,可用的背包容量为r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的条件,所得值为1 5,但因为[x2,x3 ]= [1,0] 同样符合容量条件且所得值为1 8,因此[x2,x3 ] = [ 0,1] 并非最优策略。即x= [ 1,0,1] 可改进为x= [ 1,1,0 ]。若设x1 = 0,则对于剩下的两种物品而言,容量限制条件为116。总之,如果子问题的结果[x2,x3 ]不是剩余情况下的一个最优解,则[x1,x2,x3 ]也不会是总体的最优解。在此问题中,最优决策序列由最优决策子序列组成。假设f (i,y) 表示剩余容量为y,剩余物品为i,i + 1,...,n 时的最优解的值,即:利用最优序列由最优子序列构成的结论,可得到f 的递归式为:
当j>=wi时: f(i,j)=max{f(i+1,j),f(i+1,j-wi)+vi} ①式
当0<=j<wi时:f(i,j)=f(i+1,j) ②式
fn( 1 ,c) 是初始时背包问题的最优解。
以本题为例:若0≤y<1 0,则f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最优解f ( 1 , 11 6 ) = m a x {f(2,11 6),f(2,11 6 - w1)+ p1} = m a x {f(2,11 6),f(2,1 6)+ 2 0 } = m a x { 3 3,3 8 } = 3 8。
现在计算xi 值,步骤如下:若f ( 1 ,c) =f ( 2 ,c),则x1 = 0,否则x1 = 1。接下来需从剩余容量c-w1中寻求最优解,用f (2, c-w1) 表示最优解。依此类推,可得到所有的xi (i= 1.n) 值。
在该例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接着利用返回值3 8 -p1=18 计算x2 及x3,此时r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此时r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。

㈤ 动态规划的0-1背包问题,请高手解释下代码

这是清华算法设计C++描述上的代码吧?呵呵 我正巧读过。
简单解释一下吧 在解释之前你要知道动态规划是一个自底向上的过程
这个算法用到了一个二维数组m[][] 来存储各个坐标的价值信息 所以横坐标表示背包号码 纵坐标表示背包容量从1到c
注意该算法只能限制c是整数且每个背包的重量也是整数.
然后int jMax=min(w[n]-1,c);找出w[n]-1和 c之间的小者。
for(int j=0;j<=jMax;j++) m[n][j]=0;表示第n个物品不选 那么所以价值为0
for(int j=w[n];j<=c;j++) m[n][j]=v[n];表示第n个物品选择 所以价值为v[n]
for(int i=n-1;i>1;i--){
jMax=min(w[i]-1,c);
for(int j=0;j<=jMax;j++) m[i][j]=m[i+1][j];
for(int j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
}
表示自n-1到2逐层计算各m[i][j]的值 每一个m[i][j]的值都是根据上一层也就是m[i][j+1] 得到的 最后处理个第一层的边界条件 m[1][c]就是所得答案了

㈥ 求动态规划01背包问题c语言的代码,要稍微简单且无错的。谢谢

int c[10][100];/*对应每种情况的最大价值*/

int knapsack(int m,int n){ // 一个载重为m的背包 总共n个物品
int i,j,w[10],p[10];
printf("each weight & value :\n");
for(i=1;i<=n;i++)
scanf("%d %d",&w[i],&p[i]); // 第i个 物品的重量w[i] 价值p[i]
for(i=0;i<10;i++)
for(j=0;j<100;j++)
c[i][j]=0;/*初始化数组*/
for(i=1;i<=n;i++) //遍历每一个物品i
for(j=1;j<=m;j++) //假设背包的载重j为1、2、3、4、5、... ... m的情况
{
if(j >= w[i]) /*如果当前物品的重量 < 背包载重*/
{
if(p[i]+c[i-1][j-w[i]]>c[i-1][j])/*如果本物品的价值加上 背包剩下的空间能放的物品的价值 大于上一次选择的最佳方案则更新c[i][j]*/
c[i][j]=p[i]+c[i-1][j-w[i]];
else
c[i][j]=c[i-1][j];
// c[i][j] = (p[i]+c[i-1][j-w[i]]>c[i-1][j])?(p[i]+c[i-1][j-w[i]]):(c[i-1][j]);
}
else c[i][j]=c[i-1][j];
}
return c[n][m];

}

int main()
{
int m,n;
printf("背包的承重量,物品的总个数:\n");
while(scanf("%d %d",&m,&n) != EOF){
printf("能装的最大总价值为%d",knapsack(m,n));
printf("\n");
}
return 0;
}

㈦ 求完全背包问题,C++算法源代码,要求从键盘输入背包能容纳的总重量T和n件物品的重量,用回溯算法。

我这有我总结和调试的背包问题的代码,你参考一下:
#include<iostream>
#include<string>
using namespace std;
int mVal,nVal;
int sum;
int *pOut;
void calFun(int m,int n)
{
if(m<1||n<1||(n==1&&m!=1))
return;
if(m==n)
{
pOut[n]=1;
for(int i=1;i<nVal;i++)
{
if(pOut[i])
cout<<i<<" ";
}
cout<<endl;
pOut[n]=0;
++sum;
}
calFun(m,n-1);
pOut[n]=1;
calFun(m-n,n-1);
pOut[n]=0;
}
int main(int argc,char *argv[])
{
cout<<"m:";
cin>>mVal;
cout<<"n:";
cin>>nVal;
if(mVal<nVal) nVal=mVal;
pOut=new int[nVal+1];
memset(pOut,0,(nVal+1)*sizeof(int));
calFun(mVal,nVal);
cout<<"总数:"<<sum<<endl;
delete []pOut;
return 0;
}

㈧ C语言背包问题递归算法

你学过数据结构了吗?如果学过,那就比较好理解,该算法的思路和求二叉树的高度的算法的思路是十分类似的。把取这i个物体看成i个阶段,则该二叉树有i+1层。其中空背包时为根结点,左孩子则为放弃了第1个物品后的背包,右孩子为选取了第1个物品后的背包。今后在对第i个物品进行选择时,向左表示放弃,向右表示选取。则递归算法可如下:
int fun(int s, int i, int n) //s传入的是背包容量, i是进行第i个物品的选取,n为剩余物品的件数
{
if(s == 0) return 有解;
else if(剩余的每件物品都装不进|| n == 0) return 无解;
L = fun(s, i + 1, n - 1); //放弃第i个物品,则下一步的背包容量仍为s,然后看其是否有解,(递归调用进入左子树)
R = fun(s - wi, i + 1, n - 1); //选取第i个物品,则下一步的背包容量为s-wi,然后看其是否有解,(递归调用进入右子树)
return (l, r); //综合考虑左右两边,看哪边是正解或都无解。其实应该返回 return (L||R);
}

㈨ C语言 背包问题 递归算法

if(n==0)应该改成

if(n<0)才对,表示没有物品可选了。我的一个改进,但输出选择项还是有问题!

#include<stdio.h>
#include<conio.h>
#defineN3
intMaxW(intn,intC,int*Volume,int*Weight,int*Select){
intW=0,W1=0;
if(n<0){//没有物品了
return0;
}
W=MaxW(n-1,C,Volume,Weight,Select);//没放入n之前的重量
if(C>=Volume[n]){//背包剩余空间可以放下物品n
W1=MaxW(n-1,C-Volume[n],Volume,Weight,Select)+Weight[n];//放入n所能得到的重量
Select[n]=0;
if(W1>W){//放入n能获得更大的重量
Select[n]=1;
W=W1;
}
}
returnW;
}

intmain(){
intC=8,W,i;
//intVolume[N]={1,2,3,4,5};//物品体积
//intWeight[N]={1,2,5,7,8};//物品重量
intVolume[N]={2,3,5};//物品体积
intWeight[N]={5,8,7};//物品重量
intSelect[N]={0};//选择标记
W=MaxW(N-1,C,Volume,Weight,Select);
printf("MaxWeight=%d,SelectList[index(volume,weight)]: ",W);
for(i=0;i<N;++i){
if(Select[i]){
printf("%d(%d,%d)",i,Volume[i],Weight[i]);
}
}
printf(" Finished! ");
getch();
return0;
}

其中的Select数组还是会多选了,你看看。

㈩ 求完全背包问题的代码(C语言或C++版)或算法

背包问题小结- []2006-07-28

做到背包问题觉得很有意思,写写看看。
完全背包问题可以用贪心算法。
代码如下:

program bag1;
const maxn=10;
var
goods:array[1..maxn,1..3] of integer;
s:array[1..maxn] of real;
i,j:integer;
m,n:integer;
y:integer;
x:real;
function max:integer;
var m:real;
i,j:integer;
begin
m:=0;
for i:=1 to n do
if (goods[i,3]=0) and (m max:=j;
end;

procere choose;
var i,j:integer;

begin
while y begin
if y begin
i:=max;
if m>=y+goods[i,1] then begin goods[i,3]:=1;x:=x+goods[i,2];y:=y+goods[i,1];end else
begin
x:=x+(m-y)*s[i];
y:=m;
end;
end;
end;
end;

begin
fillchar(goods,sizeof(goods),0);
assign(input,'b.txt');
reset(input);
readln(m,n);
for j:=1 to n do
read(goods[j,1]);
readln;
for j:=1 to n do
read(goods[j,2]);
for j:=1 to n do
s[j]:=goods[j,2]/goods[j,1];

close(input);
choose;
writeln(x:5:2);
end.
编得不是很好 ^-^ 献丑了。

我来说说0/1背包问题。
状态:当前物品n
算符:j=0(当前物品不放入背包) 或 j=1(当前物品放入背包)
这就很好说了,还是把yes函数一改,问题OK了。
代码如下:

program bag2;
const maxn=10;
var i:integer;
goods:array[1..maxn,1..3] of integer;{原始数据}
s:array[1..maxn] of integer;{当前的状态}
r:array[1..maxn] of integer;{当前的总质量}
m:integer;{背包容量}
max:integer;{物品个数}
procere try(n:integer);
var j:integer;

{function yes:boolean;
var k:integer;
t:integer;
mn:integer;
begin
mn:=0;
t:=goods[n,3];
goods[n,3]:=j;
for k:=1 to n do
if goods[k,3]=1 then inc(mn,goods[k,1]);
goods[n,3]:=t;
if mn>m then yes:=false else yes:=true;
end;}

begin
if n=max+1 then begin if x for i:=1 to max do s[i]:=goods[i,3]; {保存最优解}end
end else
begin
if r[n-1]>m then exit;{已超过背包总容量}
for j:=1 downto 0 do
begin
if j=1 then r[n]:=r[n-1]+goods[n,1];
if j=0 then r[n]:=r[n]-goods[n,1];
if {yes}r[n]<=m then begin goods[n,3]:=j;try(n+1);goods[n,3]:=0;end
end;
end;
end;

begin
assign(input,'b.txt');
reset(input);
readln(m,max);
for i:=1 to max do
read(goods[i,1]);
readln;
for i:=1 to max do
read(goods[i,2]);
close(input);
try(1);
for i:=1 to 7 do
write(s[i]:3);
writeln;
writeln(x);
end.

用yes 函数要从头到当前求已装入背包物品的总质量,时间效率不高。所以我们引入r[n]数组来记录当前背包总质量(很好用!)注意用r[n-1]>m来做剪枝,以再次提高时间效率。

DC跟我说可以用二进制解此类问题。我觉得很有创意,也说说。比如8个物品,每个物品有0/1两种状态所以我们从(00000000)(二进制 )到(11111111)(二进制)循环即可。然后在分离十进制数对应起来即可。但在实际的操作中发现效率比回溯还低,我想有两方面的原因:1、显而易见,不可能做剪枝。2、每一次结果都要从1到8求和十效率降低。不过这确实是一种很新颖的算法。

阅读全文

与背包问题算法代码相关的资料

热点内容
全自动化编程 浏览:725
程序员高薪限制 浏览:692
压缩图片压缩 浏览:75
美国发明解压魔方 浏览:301
电脑怎么备案网上服务器 浏览:514
旅行商问题Python写法 浏览:952
解压破坏王里面的所有兑换码 浏览:860
文件夹如何拖拽还保留原来的 浏览:22
职业生涯pdf 浏览:954
ubuntu安装软件php 浏览:159
黑马程序员退学流程 浏览:362
网页服务器崩溃怎么回事 浏览:651
cnc编程前景怎么样 浏览:320
lniux命令详解 浏览:494
linuxmysql查询日志 浏览:369
老捷达伙伴压缩比 浏览:94
改后缀加密 浏览:433
邮局选址问题算法 浏览:16
河北服务器内存云主机 浏览:13
在电脑上怎么找到加密狗图标 浏览:438