导航:首页 > 源码编译 > 谷歌算法计算机视觉模型

谷歌算法计算机视觉模型

发布时间:2022-08-19 16:00:11

① 谷歌人工智能算法哪个方面比较强

利用人工智能,谷歌将强化自己的搜索能力,加强公司在该领域的竞争优势。而使用TensorFlow,该公司的开源应用程序为其他基于云的平台创建了先例,并允许研究团体利用公司的资源来推进 AI 的集成。

② 机器人也可以“边行动边思考”,谷歌大脑的RL算法是什么

Rl算法是谷歌大脑与众多美国名校实验室合作共同提出的一种算法。比如全世界顶尖的加州伯克利分校的x实验室。这种算法能使机器人像人一样,一边行动一边思考。而该团队研发这种算法的初衷是让人工智能去模仿人和动物的行为来达到在其运动或者动作时,动作更流畅,以及面对问题时的处理更强大不易产生故障。

这些研究者认为他们的研究可以让机器人更加智能化,更与人类的思考方式接近,更有利于在真实环境中应用机器人技术来造福人类,为人类服务。他们所使用的这种模型是为了让机器人的动作流畅一个接一个,中途不发生中断。所以说这个算法的出现可以说对人工智能相关的研究就和产业都有了很大的支持和进步。期待这种算法能够通过更成熟的研发早日应用于我们的生活之中。

③ 谷歌相机军刀算法是什么

谷歌相机军刀算法是Google创建的一种合并方法。通过查询得知,军刀算法也叫SuperResZoom,“超分辨率”。最简单理解,就是该算法是一种超越物理光学变焦的谷歌大法独特数码变焦算法。再叠加HDR+ZSL,即高动态范围成像增强版,谷歌可以拍出来超细节的照片。这也是谷歌除夜视以外,非常核心的算法了。

④ 深度学习之卷积神经网络经典模型

LeNet-5模型 在CNN的应用中,文字识别系统所用的LeNet-5模型是非常经典的模型。LeNet-5模型是1998年,Yann LeCun教授提出的,它是第一个成功大规模应用在手写数字识别问题的卷积神经网络,在MNIST数据集中的正确率可以高达99.2%。

下面详细介绍一下LeNet-5模型工作的原理。
LeNet-5模型一共有7层,每层包含众多参数,也就是卷积神经网络中的参数。虽然层数只有7层,这在如今庞大的神经网络中可是说是非常少的了,但是包含了卷积层,池化层,全连接层,可谓麻雀虽小五脏俱全了。为了方便,我们把卷积层称为C层,下采样层叫做下采样层。
首先,输入层输入原始图像,原始图像被处理成32×32个像素点的值。然后,后面的隐层计在卷积和子抽样之间交替进行。C1层是卷积层,包含了六个特征图。每个映射也就是28x28个神经元。卷积核可以是5x5的十字形,这28×28个神经元共享卷积核权值参数,通过卷积运算,原始信号特征增强,同时也降低了噪声,当卷积核不同时,提取到图像中的特征不同;C2层是一个池化层,池化层的功能在上文已经介绍过了,它将局部像素值平均化来实现子抽样。
池化层包含了六个特征映射,每个映射的像素值为14x14,这样的池化层非常重要,可以在一定程度上保证网络的特征被提取,同时运算量也大大降低,减少了网络结构过拟合的风险。因为卷积层与池化层是交替出现的,所以隐藏层的第三层又是一个卷积层,第二个卷积层由16个特征映射构成,每个特征映射用于加权和计算的卷积核为10x10的。第四个隐藏层,也就是第二个池化层同样包含16个特征映射,每个特征映射中所用的卷积核是5x5的。第五个隐藏层是用5x5的卷积核进行运算,包含了120个神经元,也是这个网络中卷积运算的最后一层。
之后的第六层便是全连接层,包含了84个特征图。全连接层中对输入进行点积之后加入偏置,然后经过一个激活函数传输给输出层的神经元。最后一层,也就是第七层,为了得到输出向量,设置了十个神经元来进行分类,相当于输出一个包含十个元素的一维数组,向量中的十个元素即0到9。
AlexNet模型
AlexNet简介
2012年Imagenet图像识别大赛中,Alext提出的alexnet网络模型一鸣惊人,引爆了神经网络的应用热潮,并且赢得了2012届图像识别大赛的冠军,这也使得卷积神经网络真正意义上成为图像处理上的核心算法。上文介绍的LeNet-5出现在上个世纪,虽然是经典,但是迫于种种复杂的现实场景限制,只能在一些领域应用。不过,随着SVM等手工设计的特征的飞速发展,LeNet-5并没有形成很大的应用状况。随着ReLU与dropout的提出,以及GPU带来算力突破和互联网时代大数据的爆发,卷积神经网络带来历史的突破,AlexNet的提出让深度学习走上人工智能的最前端。
图像预处理
AlexNet的训练数据采用ImageNet的子集中的ILSVRC2010数据集,包含了1000类,共1.2百万的训练图像,50000张验证集,150000张测试集。在进行网络训练之前我们要对数据集图片进行预处理。首先我们要将不同分辨率的图片全部变成256x256规格的图像,变换方法是将图片的短边缩放到 256像素值,然后截取长边的中间位置的256个像素值,得到256x256大小的图像。除了对图片大小进行预处理,还需要对图片减均值,一般图像均是由RGB三原色构成,均值按RGB三分量分别求得,由此可以更加突出图片的特征,更方便后面的计算。
此外,对了保证训练的效果,我们仍需对训练数据进行更为严苛的处理。在256x256大小的图像中,截取227x227大小的图像,在此之后对图片取镜像,这样就使得原始数据增加了(256-224)x(256-224)x2= 2048倍。最后对RGB空间做PCA,然后对主成分做(0,0.1)的高斯扰动,结果使错误率下降1%。对测试数据而言,抽取以图像4个角落的大小为224224的图像,中心的224224大小的图像以及它们的镜像翻转图像,这样便可以获得10张图像,我们便可以利用softmax进行预测,对所有预测取平均作为最终的分类结果。
ReLU激活函数
之前我们提到常用的非线性的激活函数是sigmoid,它能够把输入的连续实值全部确定在0和1之间。但是这带来一个问题,当一个负数的绝对值很大时,那么输出就是0;如果是绝对值非常大的正数,输出就是1。这就会出现饱和的现象,饱和现象中神经元的梯度会变得特别小,这样必然会使得网络的学习更加困难。此外,sigmoid的output的值并不是0为均值,因为这会导致上一层输出的非0均值信号会直接输入到后一层的神经元上。所以AlexNet模型提出了ReLU函数,公式:f(x)=max(0,x)f(x)=max(0,x)。

用ReLU代替了Sigmoid,发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid快很多,这成了AlexNet模型的优势之一。
Dropout
AlexNet模型提出了一个有效的模型组合方式,相比于单模型,只需要多花费一倍的时间,这种方式就做Dropout。在整个神经网络中,随机选取一半的神经元将它们的输出变成0。这种方式使得网络关闭了部分神经元,减少了过拟合现象。同时训练的迭代次数也得以增加。当时一个GTX580 GPU只有3GB内存,这使得大规模的运算成为不可能。但是,随着硬件水平的发展,当时的GPU已经可以实现并行计算了,并行计算之后两块GPU可以互相通信传输数据,这样的方式充分利用了GPU资源,所以模型设计利用两个GPU并行运算,大大提高了运算效率。
模型分析

AlexNet模型共有8层结构,其中前5层为卷积层,其中前两个卷积层和第五个卷积层有池化层,其他卷积层没有。后面3层为全连接层,神经元约有六十五万个,所需要训练的参数约六千万个。
图片预处理过后,进过第一个卷积层C1之后,原始的图像也就变成了55x55的像素大小,此时一共有96个通道。模型分为上下两块是为了方便GPU运算,48作为通道数目更加适合GPU的并行运算。上图的模型里把48层直接变成了一个面,这使得模型看上去更像一个立方体,大小为55x55x48。在后面的第二个卷积层C2中,卷积核的尺寸为5x5x48,由此再次进行卷积运算。在C1,C2卷积层的卷积运算之后,都会有一个池化层,使得提取特征之后的特征图像素值大大减小,方便了运算,也使得特征更加明显。而第三层的卷积层C3又是更加特殊了。第三层卷积层做了通道的合并,将之前两个通道的数据再次合并起来,这是一种串接操作。第三层后,由于串接,通道数变成256。全卷积的卷积核尺寸也就变成了13×13×25613×13×256。一个有4096个这样尺寸的卷积核分别对输入图像做4096次的全卷积操作,最后的结果就是一个列向量,一共有4096个数。这也就是最后的输出,但是AlexNet最终是要分1000个类,所以通过第八层,也就是全连接的第三层,由此得到1000个类输出。
Alexnet网络中各个层发挥了不同的作用,ReLU,多个CPU是为了提高训练速度,重叠pool池化是为了提高精度,且不容易产生过拟合,局部归一化响应是为了提高精度,而数据增益与dropout是为了减少过拟合。
VGG net
在ILSVRC-2014中,牛津大学的视觉几何组提出的VGGNet模型在定位任务第一名和分类任务第一名[[i]]。如今在计算机视觉领域,卷积神经网络的良好效果深得广大开发者的喜欢,并且上文提到的AlexNet模型拥有更好的效果,所以广大从业者学习者试图将其改进以获得更好地效果。而后来很多人经过验证认为,AlexNet模型中所谓的局部归一化响应浪费了计算资源,但是对性能却没有很大的提升。VGG的实质是AlexNet结构的增强版,它侧重强调卷积神经网络设计中的深度。将卷积层的深度提升到了19层,并且在当年的ImageNet大赛中的定位问题中获得了第一名的好成绩。整个网络向人们证明了我们是可以用很小的卷积核取得很好地效果,前提是我们要把网络的层数加深,这也论证了我们要想提高整个神经网络的模型效果,一个较为有效的方法便是将它的深度加深,虽然计算量会大大提高,但是整个复杂度也上升了,更能解决复杂的问题。虽然VGG网络已经诞生好几年了,但是很多其他网络上效果并不是很好地情况下,VGG有时候还能够发挥它的优势,让人有意想不到的收获。

与AlexNet网络非常类似,VGG共有五个卷积层,并且每个卷积层之后都有一个池化层。当时在ImageNet大赛中,作者分别尝试了六种网络结构。这六种结构大致相同,只是层数不同,少则11层,多达19层。网络结构的输入是大小为224*224的RGB图像,最终将分类结果输出。当然,在输入网络时,图片要进行预处理。
VGG网络相比AlexNet网络,在网络的深度以及宽度上做了一定的拓展,具体的卷积运算还是与AlexNet网络类似。我们主要说明一下VGG网络所做的改进。第一点,由于很多研究者发现归一化层的效果并不是很好,而且占用了大量的计算资源,所以在VGG网络中作者取消了归一化层;第二点,VGG网络用了更小的3x3的卷积核,而两个连续的3x3的卷积核相当于5x5的感受野,由此类推,三个3x3的连续的卷积核也就相当于7x7的感受野。这样的变化使得参数量更小,节省了计算资源,将资源留给后面的更深层次的网络。第三点是VGG网络中的池化层特征池化核改为了2x2,而在AlexNet网络中池化核为3x3。这三点改进无疑是使得整个参数运算量下降,这样我们在有限的计算平台上能够获得更多的资源留给更深层的网络。由于层数较多,卷积核比较小,这样使得整个网络的特征提取效果很好。其实由于VGG的层数较多,所以计算量还是相当大的,卷积层比较多成了它最显着的特点。另外,VGG网络的拓展性能比较突出,结构比较简洁,所以它的迁移性能比较好,迁移到其他数据集的时候泛化性能好。到现在为止,VGG网络还经常被用来提出特征。所以当现在很多较新的模型效果不好时,使用VGG可能会解决这些问题。
GoogleNet
谷歌于2014年Imagenet挑战赛(ILSVRC14)凭借GoogleNet再次斩获第一名。这个通过增加了神经网络的深度和宽度获得了更好地效果,在此过程中保证了计算资源的不变。这个网络论证了加大深度,宽度以及训练数据的增加是现有深度学习获得更好效果的主要方式。但是增加尺寸可能会带来过拟合的问题,因为深度与宽度的加深必然会带来过量的参数。此外,增加网络尺寸也带来了对计算资源侵占过多的缺点。为了保证计算资源充分利用的前提下去提高整个模型的性能,作者使用了Inception模型,这个模型在下图中有展示,可以看出这个有点像金字塔的模型在宽度上使用并联的不同大小的卷积核,增加了卷积核的输出宽度。因为使用了较大尺度的卷积核增加了参数。使用了1*1的卷积核就是为了使得参数的数量最少。

Inception模块
上图表格为网络分析图,第一行为卷积层,输入为224×224×3 ,卷积核为7x7,步长为2,padding为3,输出的维度为112×112×64,这里面的7x7卷积使用了 7×1 然后 1×7 的方式,这样便有(7+7)×64×3=2,688个参数。第二行为池化层,卷积核为3×33×3,滑动步长为2,padding为 1 ,输出维度:56×56×64,计算方式:1/2×(112+2×1?3+1)=56。第三行,第四行与第一行,第二行类似。第 5 行 Inception mole中分为4条支线,输入均为上层产生的 28×28×192 结果:第 1 部分,1×1 卷积层,输出大小为28×28×64;第 2 部分,先1×1卷积层,输出大小为28×28×96,作为输入进行3×3卷积层,输出大小为28×28×128;第 3部分,先1×1卷积层,输出大小为28×28×32,作为输入进行3×3卷积层,输出大小为28×28×32;而第3 部分3×3的池化层,输出大小为输出大小为28×28×32。第5行的Inception mole会对上面是个结果的输出结果并联,由此增加网络宽度。
ResNet
2015年ImageNet大赛中,MSRA何凯明团队的ResialNetworks力压群雄,在ImageNet的诸多领域的比赛中上均获得了第一名的好成绩,而且这篇关于ResNet的论文Deep Resial Learning for Image Recognition也获得了CVPR2016的最佳论文,实至而名归。
上文介绍了的VGG以及GoogleNet都是增加了卷积神经网络的深度来获得更好效果,也让人们明白了网络的深度与广度决定了训练的效果。但是,与此同时,宽度与深度加深的同时,效果实际会慢慢变差。也就是说模型的层次加深,错误率提高了。模型的深度加深,以一定的错误率来换取学习能力的增强。但是深层的神经网络模型牺牲了大量的计算资源,学习能力提高的同时不应当产生比浅层神经网络更高的错误率。这个现象的产生主要是因为随着神经网络的层数增加,梯度消失的现象就越来越明显。所以为了解决这个问题,作者提出了一个深度残差网络的结构Resial:

上图就是残差网络的基本结构,可以看出其实是增加了一个恒等映射,将原本的变换函数H(x)转换成了F(x)+x。示意图中可以很明显看出来整个网络的变化,这样网络不再是简单的堆叠结构,这样的话便很好地解决了由于网络层数增加而带来的梯度原来越不明显的问题。所以这时候网络可以做得很深,到目前为止,网络的层数都可以上千层,而能够保证很好地效果。并且,这样的简单叠加并没有给网络增加额外的参数跟计算量,同时也提高了网络训练的效果与效率。
在比赛中,为了证明自己观点是正确的,作者控制变量地设计几个实验。首先作者构建了两个plain网络,这两个网络分别为18层跟34层,随后作者又设计了两个残差网络,层数也是分别为18层和34层。然后对这四个模型进行控制变量的实验观察数据量的变化。下图便是实验结果。实验中,在plain网络上观测到明显的退化现象。实验结果也表明,在残差网络上,34层的效果明显要好于18层的效果,足以证明残差网络随着层数增加性能也是增加的。不仅如此,残差网络的在更深层的结构上收敛性能也有明显的提升,整个实验大为成功。

除此之外,作者还做了关于shortcut方式的实验,如果残差网络模块的输入输出维度不一致,我们如果要使维度统一,必须要对维数较少的进行増维。而增维的最好效果是用0来填充。不过实验数据显示三者差距很小,所以线性投影并不是特别需要。使用0来填充维度同时也保证了模型的复杂度控制在比较低的情况下。
随着实验的深入,作者又提出了更深的残差模块。这种模型减少了各个层的参数量,将资源留给更深层数的模型,在保证复杂度很低的情况下,模型也没有出现梯度消失很明显的情况,因此目前模型最高可达1202层,错误率仍然控制得很低。但是层数如此之多也带来了过拟合的现象,不过诸多研究者仍在改进之中,毕竟此时的ResNet已经相对于其他模型在性能上遥遥领先了。
残差网络的精髓便是shortcut。从一个角度来看,也可以解读为多种路径组合的一个网络。如下图:

ResNet可以做到很深,但是从上图中可以体会到,当网络很深,也就是层数很多时,数据传输的路径其实相对比较固定。我们似乎也可以将其理解为一个多人投票系统,大多数梯度都分布在论文中所谓的effective path上。
DenseNet
在Resnet模型之后,有人试图对ResNet模型进行改进,由此便诞生了ResNeXt模型。

这是对上面介绍的ResNet模型结合了GoogleNet中的inception模块思想,相比于Resnet来说更加有效。随后,诞生了DenseNet模型,它直接将所有的模块连接起来,整个模型更加简单粗暴。稠密相连成了它的主要特点。

我们将DenseNet与ResNet相比较:

从上图中可以看出,相比于ResNet,DenseNet参数量明显减少很多,效果也更加优越,只是DenseNet需要消耗更多的内存。
总结
上面介绍了卷积神经网络发展史上比较着名的一些模型,这些模型非常经典,也各有优势。在算力不断增强的现在,各种新的网络训练的效率以及效果也在逐渐提高。从收敛速度上看,VGG>Inception>DenseNet>ResNet,从泛化能力来看,Inception>DenseNet=ResNet>VGG,从运算量看来,Inception<DenseNet< ResNet<VGG,从内存开销来看,Inception<ResNet< DenseNet<VGG。在本次研究中,我们对各个模型均进行了分析,但从效果来看,ResNet效果是最好的,优于Inception,优于VGG,所以我们第四章实验中主要采用谷歌的Inception模型,也就是GoogleNet。

⑤ 历史上谷歌Google推出了哪些算法

谷歌算法始于PageRank,这是1997年拉里·佩奇(Larry Page)在斯坦福大学读博士学位时开发的。
佩奇的创新性想法是:把整个互联网复制到本地数据库,然后对网页上所有的链接进行分析。基于入链接的数量和重要性、及锚文本对网页的受欢迎程度进行评级,也就是通过网络的集体智慧确定哪些网站最有用。随着谷歌迅速成为互联网上最成功的搜索引擎,佩奇和谷歌的另一名创始人塞吉·布林(Sergey Brin)将PageRank这一简单概念看做谷歌的最根本创新
PageRank具有其优势,为带来高质量的搜索结果做出了贡献。但这种过度依靠外链分析单一算法也具有弊端,那就是很多站长采取作弊手法来增加网站的外链,因此网络上有很多垃圾外链。
为了应对这种情况谷歌13年更新了其核心算法,那就是蜂鸟算法(Hummmingbird)。在此套算法中,PageRank仍旧起很大作用,但是已经不是唯一的排名机制!随着时间的推移,外链在排名中所起的作用将逐渐衰落!

⑥ 谷歌开源了TensorFlow,世界就要马上被改变了吗

Google 开源了其第二代深度学习技术 TensorFlow——被使用在 Google
搜索、图像识别以及邮箱的深度学习框架。这在相关媒体圈、工程师圈、人工智能公司、人工智能研究团队里有了一些讨论。比较有趣的是,微软亚洲研究院立刻向
媒体发邮件表示,我们发布了开源分布式机器学习工具包(DMTK)。
对于大众来说,这件事让人
“困惑”。从 “深度学习” 到 “分布式系统”,太多概念大众一知半解,现今给出的资料又让人难以理解。而对于 “Google 开源
TensorFlow” 这一事件,各个公司、团队、学术权威也是众说纷纭。因此,出门问问为大家 “破雾”,并讲一讲这次开源意味着什么。
什么是深度学习?

度学习系统是什么?深度学习理论于 2006年 被提出,它通过模拟 “人脑的神经网络”
来解释图像、声音和文本等数据。但是目前的计算机还达不到模拟人脑数量庞大的神经元(千亿级),因此便有了用到成千上万大型计算机(计算平台集群)来吸收
数据对其进行自动分类的 “分布式深度学习系统”。
TensorFlow 的起源和此次开源事件
Google
将自家研发的深度学习系统命名为 “DistBelief”,它使得 Google
能够同时处理成千上万台大型计算机的数据,构建更大型的神经网络和大规模训练。Google
的搜索、图像识别及邮箱等均采用了该技术。一般情况下,深度学习系统都需要先设定好 feature(特征),再学习如何分辨。但
Google DistBelief 神奇的地方在于,“Google Brain” 开发团队 “XLab” 曾用它在未事先获取 “猫的特征描述”
信息的情况下,从大量 YouTube 视频中区分出了哪些是猫的视频。这意味着深度学习系统 “DistBelief” 自行总结出了猫的
feature(特征)!虽然这个案例的识别范围、识别率有待提高(81.7%),但作为人工智能最经典案例之一,为人工智能翻开了新的篇章。而 “猫”
的事件,也让曾经的 Google Brain 开发团队 “XLab” 的核心人员、现在被李彦宏挖到网络的吴恩达得到了
“Google Brain” 之父的美誉。不过,时代总是进步,而 “DistBelief” 有缺陷。
Google
称,虽然 DistBelief 非常成功,但它仅仅以神经网络为目的、十分局限,而且很难进行配置。另外,DistBelief 牢牢绑定在
Google 的内部基础设施上,几乎不可能将代码与外界共享。因此,本文的主角,Google 的第二代深度学习系统 “TensorFlow”
横空出世了。
Google 表示,TensorFlow
在设计上尤其针对克服 DistBelief 的短板,灵活、更通用、易使用、更快,而且完全开源。TensorFlow
可以被架设在智能手机这样小的设备上,甚至仅一块电路板上,更灵活; TensorFlow
可以被使用在很多计算平台,无论是智能手机还是大型计算机、单个 CPU / GPU 计算机还是成百上千 GPU 卡组成的分布式系统,ARM 的还是
X86 的构架,更通用;TensorFlow 支持多种编程语言,提供了很多深度学习模型库,易使用;在很多指标上,TensorFlow 要比
DistBelief 要快一倍,更快。但是,学术界和工程界的一些朋友并不喜欢这个 “刚刚闯入” 开源界的 “小伙子”,判了它 “意义不大”
的死刑。“TensorFlow” 之所以 “开源” 却不讨好,是因为 TensorFlow 不是第一个被开源的深度学习系统,并且目前只开源了
“单机版”,而非能够识别猫的 “分布式版本”。除了并非第一以及只开源了单机版代码这两点外,Google 开源 TensorFlow
这件事最被人诟病的地方在于,在 “用事实”、“用数据” 说话的学术界、工程界,Google 并未用 “数据对比” 证明 TensorFlow 的
“灵活、更通用、易使用”。
对于 TensorFlow,出门问问的看法是,TensorFlow 对学术界意义不大,但是对工程界意义挺大。
TensorFlow 对工程界有意义:其它开源工具虽然众多 但对工程界很难有效使用
Google
这次开源的 TensorFlow 是一种人工智能(更具体的说是深度学习)编程语言或计算框架,学术界从来都不缺少类似的开源工具,尤其是
“单机版工具包” 有很多。但是学术界的工具往往更多专注在核心算法上,在系统和工程方面比较欠缺,工业界很难直接有效的使用,而 Google 的
TensorFlow 在架构设计,跨平台可移植性,算法可扩展性等等偏工程方面会做的比较好。所以,TensorFlow
对学术界的帮助比较小,但对工业界的帮助有很大潜在可能性。比如语音识别、自然语言理解、计算机视觉、广告等等都可以应用这种深度学习算法,Google
也因为深度学习系统的应用使得 Google 语音识别水平提高 25%。
有意义归有意义,意义的大小
是另一回事了。在这个信息交流频繁的时代,没有公司能随便制造一个具有超大意义的事件或者跨时代的黑科技产品。对于工程界,TensorFlow
有意义但又不是神乎其神的东西,尤其是 Google 目前开源的 “单机版” 的 TensorFlow
意义要小一些。因为在工程界里,若要完成一整件事,如识别语音,TensorFlow
这种通用深度学习框架的存在更多是锦上添花,而非决定根本。比如说在一个可以应用的语音识别系统里, 除了深度学习算法外,还有很多工作是专业领域相关的
算法以及海量数据收集和工程系统架构的搭建。
其实,对于中国来说,TensorFlow
还有一个意义。在人工智能大潮下许多人和公司想入局,但大都没有能力理解并开发一个与国际同步的深度学习系统,而 TensorFlow
的存在会大大降低深度学习在各个行业中的应用难度。至于弄懂 TensorFlow 要花费大量时间的问题,就像很多公司用 Linux 或者
hadoop(一种分布式系统基础架构)但很少有公司弄懂了所有源代码一样,可以把 TensorFlow
当成一个黑盒,先快速用起来,之后再根据数据和专业领域知识来调整。
总的来说,如果 Google 按照其所说的那样,在未来完全开源 TensorFlow——包括其 “分布式版本”,那么 TensorFlow 对工程界的影响会更明显些——尤其对中国创业公司来说。

⑦ 带你了解数据挖掘中的经典算法

数据挖掘的算法有很多,而不同的算法有着不同的优点,同时也发挥着不同的作用。可以这么说,算法在数据挖掘中做出了极大的贡献,如果我们要了解数据挖掘的话就不得不了解这些算法,下面我们就继续给大家介绍一下有关数据挖掘的算法知识。
1.The Apriori algorithm,
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。这个算法是比较复杂的,但也是十分实用的。
2.最大期望算法
在统计计算中,最大期望算法是在概率模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量。最大期望经常用在机器学习和计算机视觉的数据集聚领域。而最大期望算法在数据挖掘以及统计中都是十分常见的。
3.PageRank算法
PageRank是Google算法的重要内容。PageRank里的page不是指网页,而是创始人的名字,即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”,这个标准就是衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
3.AdaBoost算法
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,然后把这些弱分类器集合起来,构成一个更强的最终分类器。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。这种算法给数据挖掘工作解决了不少的问题。
数据挖掘算法有很多,这篇文章中我们给大家介绍的算法都是十分经典的算法,相信大家一定可以从中得到有价值的信息。需要告诉大家的是,我们在进行数据挖掘工作之前一定要事先掌握好数据挖掘需呀掌握的各类算法,这样我们才能在工总中得心应手,如果基础不牢固,那么我们迟早是会被淘汰的。职场如战场,我们一定要全力以赴。

阅读全文

与谷歌算法计算机视觉模型相关的资料

热点内容
汽车遥控编程器 浏览:783
方舟在服务器如何发全体文字 浏览:345
一部很多女子格斗的电影 浏览:770
外国大胸美女电影推荐 浏览:208
大尺很色床戏电影 浏览:432
郑州阿里程序员 浏览:131
韩国爱情推理片全部复制 浏览:462
台湾影视国语 浏览:571
穿越之我那三千个兄弟训诫 浏览:486
连母亲都收的小说 浏览:839
叶子媚演过尺较大的电影在线观看 浏览:832
app反感怎么解决 浏览:332
极光设置app是什么 浏览:79
app广告怎么赚钱 浏览:917
男主被系统控制的小说下载 浏览:951
钛2电影高清完整版 浏览:440
linux启动项目命令 浏览:531
乳山迷雾txt全文阅读全文小说 浏览:885
vm同步命令 浏览:14
安卓转移到ios王者荣耀怎么登 浏览:955