导航:首页 > 源码编译 > 两轴矩阵算法

两轴矩阵算法

发布时间:2022-08-19 17:51:34

① 矩阵的公式是什么

矩阵的基本运算公式有加法,减法,数乘,转置,共轭和共轭转置。

1、加法运算A+B=C、数乘运算k*A=B、乘法运算A*B=C,加法运算和数乘运算合称线性运算,由加法运算和数乘运算可以得到减法运算A+(-1)*B=A-B,矩阵没有除法运算,两个矩阵之间是不能相除的,但是当矩阵可逆的时候,可以对矩阵求逆。

2、矩阵的秩计算公式是A=aij m×n。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

3、行列式和他的转置行列式相等,变换一个行列式的两行,行列式改变符号即变为之前的相反数,如果一个行列式有两行完全相同,那么这个行列式等于零,一个行列式中的某一行,所有元素的公因子可以提到行列式符号的外面,如果一个行列式中有一行,的元素全部是零,那么这个行列式等于零。

矩阵的应用:

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

② 两个矩阵相乘算法

矩阵相乘需要前面矩阵的行数与后面矩阵的列数相同方可相乘。

第一步先将前面矩阵的每一行分别与后面矩阵的列相乘作为结果矩阵的行列。

(2)两轴矩阵算法扩展阅读:

矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义 。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。

1、当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。

2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

③ 2*3和2*2矩阵乘法公式

2*3和2*2矩阵乘法公式:AB=aA+bB+cC,aD+bE+cF,dA+eB+fC,dD+eE+fF,gA+hB+iC,gD+hE+iF。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

④ 矩阵怎么算

有下面三种情况:

1、如果你所要求的是一般矩阵的高次幂的话,是没有捷径可走的,只能够一个个去乘出来。

至于低次幂,如果能够相似对角化,即:存在简便算法的话,在二阶矩阵的情况下简便算法未必有直接乘来得快,所以推荐直接乘。

2、如果你要求的是能够相似对角化的矩阵的高次幂的话,是存在简便算法的。

设要求矩阵A的n次幂,且A=Q^(-1)*Λ*Q,其中Q为可逆阵,Λ为对角阵。

即:A可以相似对角化。那么此时,有求幂公式:A^n=Q^(-1)*(Λ)^n*Q,而对角阵求n次方,只需要每个对角元素变为n次方即可,这样就可以快速求出二阶矩阵A的的高次幂。

3、如果矩阵可以相似对角化,求相似对角化的矩阵Q的具体步骤为:

求|λE-A|=0 (其中E为单位阵)的解,得λ1和λ2(不管是否重根),这就是Λ矩阵的对角元素。

依次把λ1和λ2带入方程(如果λ是重根只需代一次,就可求得两个基础解)[λE-A][x]=[0],求得两个解向量[x1]、[x2],从而矩阵Q的形式就是[x1 x2]。

接下来的求逆运算是一种基础运算,这里不再赘述。

下面可以举一个例子:

二阶方阵:

1 a

0 1

求它的n次方矩阵

方阵A的k次幂定义为 k 个A连乘: A^k = AA...A (k个)

一些常用的性质有:

1. (A^m)^n = A^mn

2. A^mA^n = A^(m+n)

一般计算的方法有:

1. 计算A^2,A^3 找规律, 然后用归纳法证明

2. 若r(A)=1, 则A=αβ^T, A^n=(β^Tα)^(n-1)A

注: β^Tα =α^Tβ = tr(αβ^T)

3. 分拆法: A=B+C, BC=CB, 用二项式公式展开

适用于 B^n 易计算, C的低次幂为零矩阵: C^2 或 C^3 = 0.

4. 用对角化 A=P^-1diagP

A^n = P^-1diag^nP

(4)两轴矩阵算法扩展阅读:

幂等矩阵的主要性质:

1.幂等矩阵的特征值只可能是0,1;

2.幂等矩阵可对角化;

3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);

4.可逆的幂等矩阵为E;

5.方阵零矩阵和单位矩阵都是幂等矩阵;

6.幂等矩阵A满足:A(E-A)=(E-A)A=0;

7.幂等矩阵A:Ax=x的充要条件是x∈R(A);

8.A的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。考虑幂等矩阵运算后仍为幂等矩阵的要求,可以给出幂等矩阵的运算:

1)设 A1,A2都是幂等矩阵,则(A1+A2) 为幂等矩阵的充分必要条件为:A1·A2 =A2·A1=0,且有:R(A1+A2) =R (A1) ⊕R (A2);N(A1+A2) =N(A1)∩N(A2);

2)设 A1, A2都是幂等矩阵,则(A1-A2) 为幂等矩阵的充分必要条件为:A1·A2=A2·A1=A2,且有:R(A1-A2) =R(A1)∩N (A2);N (A1- A2) =N (A1)⊕R (A2);

3)设 A1,A2都是幂等矩阵,若A1·A2=A2·A1,则A1·A2为幂等矩阵,且有:R (A1·A2) =R(A1) ∩R (A2);N (A1·A2) =N (A1) +N (A2)。

⑤ 两个二阶矩阵相乘怎么算

矩阵相乘需要前面矩阵的行数与后面矩阵的列数相同方可相乘。

第一步先将前面矩阵的每一行分别与后面矩阵的列相乘作为结果矩阵的行列。

第二步算出结果即可。

第一个的列数等于第二个的行数,A(3,4) 。B(4,2) 。C=AB,C(3,2)。


(5)两轴矩阵算法扩展阅读:

矩阵相乘最重要的方法是一般矩阵乘积。只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义 。

一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。

⑥ 高等数学三重积分

这是二重积分

⑦ 二次型的矩阵怎么求

二次型f(x,y,z)=ax+by+cz+dxy+exz+fyz,用矩阵表示的时候,矩阵的元素与二次型系数的对应关系为:A11=a,A22=b,A33=c,A12=A21=d/2,A13=A31=e/2,A23=A32=f/2。二次型:n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。二次型理论与域的特征有关。

二次型(quadratic form):n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。二次型理论与域的特征有关。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

⑧ 什么是两矩阵复合运算表达式是啥

只要是可以称为矩阵的数列都是满足数的运算法则的

这里首先要弄清楚什么是矩阵

矩阵就是由方程组的系数及常数所构成的方阵。
把用在解线性方程组上既方便,又直观。例如对于方程组。

a1x+b1y+c1z=d1

a2x+b2y+c2z=d2

a3x+b3y+c3z=d3

来说,我们可以构成两个矩阵:

a1b1c1a1b1c1d1

a2b2c2a2b2c2d2

a3b3c3a3b3c3d3

因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。

矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的。

但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状。随后移动处筹,就可以求出这个方程的解。在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年。

数学上,一个m×n矩阵乃一m行n列的矩形阵列。矩阵由数组成,或更一般的,由某环中元素组成。

矩阵常见于线性代数、线性规划、统计分析,以及组合数学等。请参考矩阵理论。

目录 [隐藏]
1 历史
2 定义和相关符号
2.1 一般环上构作的矩阵
2.2 分块矩阵
3 特殊矩阵类别
4 矩阵运算
5 线性变换,秩,转置
6 Jacobian 行列式
7 参见

[编辑]
历史
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

作为解决线性方程的工具,矩阵也有不短的历史。1693年,微积分的发现者之一戈特弗里德·威廉·莱布尼茨建立了行列式论(theory of determinants)。1750年,加布里尔·克拉默其后又定下了克拉默法则。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。

1848年詹姆斯·约瑟夫·西尔维斯特首先创出matrix一词。研究过矩阵论的着名数学家有凯莱、威廉·卢云·哈密顿、格拉斯曼、弗罗贝尼乌斯和冯·诺伊曼。

[编辑]
定义和相关符号
以下是一个 4 × 3 矩阵:

某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。

在C语言中,亦以 A[i][j] 表达。(值得注意的是,与一般矩阵的算法不同,在C中,"行"和"列"都是从0开始算起的)

此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学着作中。

[编辑]
一般环上构作的矩阵
给出一环 R,M(m,n, R) 是所有由 R 中元素排成的 m× n 矩阵的集合。若 m=n,则通常记以 M(n,R)。这些矩阵可加可乘 (请看下面),故 M(n,R) 本身是一个环,而此环与左 R 模 Rn 的自同态环同构。

若 R 可置换, 则 M(n, R) 为一带单位元的 R-代数。其上可以莱布尼茨公式定义 行列式:一个矩阵可逆当且仅当其行列式在 R 内可逆。

在维基网络内,除特别指出,一个矩阵多是实数矩阵或虚数矩阵。

[编辑]
分块矩阵
分块矩阵 是指一个大矩阵分割成“矩阵的矩阵”。举例,以下的矩阵

可分割成 4 个 2×2 的矩阵


此法可用于简化运算,简化数学证明,以及一些电脑应用如VLSI芯片设计等。

[编辑]
特殊矩阵类别
对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。
埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。
特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。
随机矩阵所有列都是概率向量, 用于马尔可夫链。
[编辑]
矩阵运算
给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例:

另类加法可见于矩阵加法.

若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如

这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.

若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中

(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。
例如

此乘法有如下性质:

(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").
(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。
C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。

对其他特殊乘法,见矩阵乘法。

[编辑]
线性变换,秩,转置
矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:

以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x ∈ Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。

矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。

m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:

(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。

⑨ 2x2矩阵运算是什么

2x2矩阵的乘法规律:

不满足交换律,A×B ≠ B×A

满足结合律,A×(B×C) = (A×B)×C

满足分配率,A×(B+C) =A×B + A×C

矩阵之间相乘,必须满足B矩阵列数等于A矩阵行数才能运算,矩阵与矩阵之间的计算可以拆分为矩阵与多个向量的计算再将结果组合,返回的结果为一个列数等于B矩阵、行数等于A矩阵的矩阵。

(9)两轴矩阵算法扩展阅读:

矩阵的作用:

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。

关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

阅读全文

与两轴矩阵算法相关的资料

热点内容
日本有剧情的电影 浏览:62
主角可以进入自己拍的影视世界小说 浏览:904
程序员那么可爱陆漓签协议 浏览:111
c计划成龙电影 浏览:937
吃了人参到处搞的电影 浏览:883
javadefault编译报错 浏览:136
python子类继承父类意义 浏览:637
男主汽车坏了女主被上了 浏览:535
电子表格app叫什么 浏览:101
有个女人拉着一把柴进城叫什么电影 浏览:480
服务器没应答怎么回事 浏览:793
鬼媾人插曲叫什么名字 浏览:183
少年王晶闯江湖pdf 浏览:163
8080换哪个网站了 浏览:664
主角陆离小说叫什么 浏览:305
大地影城今日影讯时间表 浏览:788
索尼的安卓10怎么样 浏览:968
程序员为什么喊命苦 浏览:740
服务器现在什么语言开发最多 浏览:16
法国啄木鸟影片名字叫什么 浏览:416