Ⅰ 小米算法工程师,第三轮面试难
咨询记录 · 回答于2021-10-21
Ⅱ #图像识别算法工程师(ocr)#坐标上海,为什么感觉招ocr公司太少。我做这个都快三年了,最近面试
招的还是有的,只是这个东西是一家公司的核心的东西,所以可遇不可求,通常也是公司内部知根知底的人,慢慢培养出来的
来自职Q用户:刘先生
算法工程师,还是挺多招的啊 来自职Q用户:刘女士
Ⅲ 小米图像调教工程师都做什么
具体如下:
1、负责手机屏幕/相机/电视等产品的画质调试与优化,改进图像算法及质量;2、负责自动对焦调试与优化,以及对焦新技术的预研;3、负责图像后处理算法的研发和优化。
小米是一家以手机、智能硬件和IoT平台为核心的互联网公司,以智能手机、智能电视、笔记本等丰富的产品与服务。致力于让全球每个人都能享受科技带来的美好生活。
Ⅳ 应届图像处理算法工程师需要掌握哪些
图像处理中算法很重要,所以数学根底是必须的。当然也不是说开发图像处理应用的公司只做算法,也会有用户交互,产品升级,特征控制,软件授权,等等诸多方面的内容,看你怎么发展了,对于感兴趣的事就不要说什么复杂困难,否则还不如趁早放弃。C语言是移植性强的语言,而且更接近底层,如果写算法应该学习。C++从 功能上来说是C的扩展集合,对C的关键字是兼容的,不过两者的设计理念差距很大。如果真想做,就学吧。
Ⅳ 小米算法岗位面试第二轮通过,被录用几率多高
摘要 百分之八十哦
Ⅵ 面试小米算法工程师进入第三轮面试被录用概率多大
摘要 您好,很高兴为你服务。我是啾啾老师,国家一级职业咨询师,拥有10年工作经验。已经看到您的问题了,正在给您整理回复,请稍等一会哦
Ⅶ 面试小米算法工程师,第一轮,第二轮顺利通过,到了第三轮,总监面第一道题脑筋急转弯,弹珠的问题,我答
咨询记录 · 回答于2021-10-24
Ⅷ 小米算法岗位面试第二轮通过,被录用几率多高
摘要 第一轮:
Ⅸ 都快2021年了,算法岗位应该怎样准备面试
说到算法岗位,现在网上的第一反应可能就是内卷,算法岗位也号称是内卷最严重的岗位。针对这个问题,其实之前我也有写过相关的文章。这个岗位竞争激烈不假,但我个人觉得称作内卷有些过了。就我个人的感觉,这几年的一个大趋势是从迷茫走向清晰。
早在2015年我在阿里妈妈实习的时候,那个时候我觉得其实对于算法工程师这个岗位的招聘要求甚至包括工作内容其实业内是没有一个统一的标准的。可以认为包括各大公司其实对这个岗位具体的工作内容以及需要的候选人的能力要求都不太一致,不同的面试官有不同的风格,也有不同的标准。
我举几个例子,第一个例子是我当初实习面试的时候,因为是本科生,的确对机器学习这个领域了解非常非常少,可以说是几乎没有。但是我依然通过了,通过的原因也很简单,因为有acm的获奖背景,面试的过程当中主要也都是一些算法题,都还算是答得不错。但是在交叉面试的时候,一位另一个部门的总监就问我有没有这块的经验?我很明确地说了,没有,但是我愿意学。
接着他告诉我,算法工程师的工作内容主要和机器学习相关,因此机器学习是基本的。当时我就觉得我凉了,然而很意外地是还是通过了面试。
核心能力
由于我已经很久没有接触校招了,所以也很难说校招面试应该怎么样准备,只能说说如果是我来招聘,我会喜欢什么样的学生。也可以理解成我理解的一个合格优秀的算法工程师应该有的能力。
模型理解
算法工程师和模型打交道,那么理解模型是必须的。其实不用说每一个模型都精通,这没有必要,面试的时候问的模型也不一定用得到。但更多地是看重这个人在学习的时候的习惯,他是浅尝辄止呢,还是会刨根究底,究竟能够学到怎样的地步。
在实际的工作当中我们可能会面临各种各样的情况,比如说新加了特征但是没有效果,比如升级了模型效果反而变差了等等,这些情况都是有可能发生的。当我们遇到这些情况之后,需要我们根据已知的信息来推理和猜测导致的原因从而针对性的采取相应的手段。因此这就需要我们对当前的模型有比较深入地了解,否则推导原因做出改进也就无从谈起。
所以面试的时候问起哪个模型都不重要,重要的是你能不能体现出你有过深入的研究和理解。
数据分析
算法工程师一直和数据打交道,那么分析数据、清洗数据、做数据的能力也必不可少。说起来简单的数据分析,这当中其实牵扯很多,简单来说至少有两个关键点。
第一个关键点是处理数据的能力,比如SQL、hive、spark、MapRece这些常用的数据处理的工具会不会,会多少?是一个都不会呢,还是至少会一点。由于各个公司的技术栈不同,一般不会抱着候选人必须刚好会和我们一样的期待去招人,但是候选人如果一无所知肯定也是不行的。由于学生时代其实很少接触这种实践的内容,很多人对这些都一无所知,如果你会一两个,其实就是加分项。
第二个关键点是对数据的理解力,举个简单的例子,比如说现在的样本训练了模型之后效果不好,我们要分析它的原因,你该怎么下手?这个问题日常当中经常遇到,也非常考验算法工程师对数据的分析能力以及他的经验。数据是水,模型是船,我们要把船驶向远方,只懂船只构造是不行的,还需要对水文、天象也有了解。这样才能从数据当中捕捉到trick,对一些现象有更深入的看法和理解。
工程能力
虽然是算法工程师,但是并不代表工程能力不重要,相反工程能力也很重要。当然这往往不会成为招聘的硬性指标, 比如考察你之前做过什么工程项目之类的。但是会在你的代码测试环节有所体现,你的代码风格,你的编码能力都是你面试的考察点之一。
并不只是在面试当中如此,在实际工作当中,工程能力也很关键。往小了说可以开发一些工具、脚本方便自己或者是团队当中其他人的日常工作,往大了说,你也可以成为团队当中的开发担当,负责其团队当中最工程的工作。比如说复现一篇paper,或者是从头撸一个模型。这其实也是一种差异化竞争的手段,你合理地负担起别人负担不了的工作,那么自然就会成为你的业绩。
时代在变化,行业在发展,如今的校招会问些什么早已经和当年不同了。但不管怎么说,这个岗位以及面试官对于人才的核心诉求几乎是没有变过的,我们从核心出发去构建简历、准备面试,相信一定可以有所收获。
Ⅹ 要面试算法工程师,大神给点相关经验啊
算法是比较复杂又基础的学科,每个学编程的人都会学习大量的算法。而根据统计,以下这18个问题是面试中最容易遇到的,本文给出了一些基本答案,供算法方向工程师或对此感兴趣的程序员参考。
1)请简单解释算法是什么?
算法是一个定义良好的计算过程,它将一些值作为输入并产生相应的输出值。简单来说,它是将输入转换为输出的一系列计算步骤。
2)解释什么是快速排序算法?
快速排序算法能够快速排序列表或查询。它基于分割交换排序的原则,这种类型的算法占用空间较小,它将待排序列表分为三个主要部分:
·小于Pivot的元素
·枢轴元素Pivot(选定的比较值)
·大于Pivot的元素
3)解释算法的时间复杂度?
算法的时间复杂度表示程序运行完成所需的总时间,它通常用大O表示法来表示。
4)请问用于时间复杂度的符号类型是什么?
用于时间复杂度的符号类型包括:
·Big Oh:它表示小于或等于目标多项式
·Big Omega:它表示大于或等于目标多项式
·Big Theta:它表示与目标多项式相等
·Little Oh:它表示小于目标多项式
·Little Omega:它表示大于目标多项式
5)解释二分法检索如何工作?
在二分法检索中,我们先确定数组的中间位置,然后将要查找的值与数组中间位置的值进行比较,若小于数组中间值,则要查找的值应位于该中间值之前,依此类推,不断缩小查找范围,直至得到最终结果。
6)解释是否可以使用二分法检索链表?
由于随机访问在链表中是不可接受的,所以不可能到达O(1)时间的中间元素。因此,对于链表来说,二分法检索是不可以的(对顺序链表或排序后的链表是可以用的)。
7)解释什么是堆排序?
堆排序可以看成是选择排序的改进,它可以定义为基于比较的排序算法。它将其输入划分为未排序和排序的区域,通过不断消除最小元素并将其移动到排序区域来收缩未排序区域。
8)说明什么是Skip list?
Skip list数据结构化的方法,它允许算法在符号表或字典中搜索、删除和插入元素。在Skip list中,每个元素由一个节点表示。搜索函数返回与key相关的值的内容。插入操作将指定的键与新值相关联,删除操作可删除指定的键。
9)解释插入排序算法的空间复杂度是多少?
插入排序是一种就地排序算法,这意味着它不需要额外的或仅需要少量的存储空间。对于插入排序,它只需要将单个列表元素存储在初始数据的外侧,从而使空间复杂度为O(1)。
10)解释什么是“哈希算法”,它们用于什么?
“哈希算法”是一个哈希函数,它使用任意长度的字符串,并将其减少为唯一的固定长度字符串。它用于密码有效性、消息和数据完整性以及许多其他加密系统。
11)解释如何查找链表是否有循环?
要知道链表是否有循环,我们将采用两个指针的方法。如果保留两个指针,并且在处理两个节点之后增加一个指针,并且在处理每个节点之后,遇到指针指向同一个节点的情况,这只有在链表有循环时才会发生。
12)解释加密算法的工作原理?
加密是将明文转换为称为“密文”的密码格式的过程。要转换文本,算法使用一系列被称为“键”的位来进行计算。密钥越大,创建密文的潜在模式数越多。大多数加密算法使用长度约为64到128位的固定输入块,而有些则使用流方法。
13)列出一些常用的加密算法?
一些常用的加密算法是:
·3-way
·Blowfish
·CAST
·CMEA
·GOST
·DES 和Triple DES
·IDEA
·LOKI等等
14)解释一个算法的最佳情况和最坏情况之间有什么区别?
·最佳情况:算法的最佳情况解释为算法执行最佳的数据排列。例如,我们进行二分法检索,如果目标值位于正在搜索的数据中心,则这就是最佳情况,最佳情况时间复杂度为0。
·最差情况:给定算法的最差输入参考。例如快速排序,如果选择关键值的子列表的最大或最小元素,则会导致最差情况出现,这将导致时间复杂度快速退化到O(n2)。
15)解释什么是基数排序算法?
基数排序又称“桶子法”,是通过比较数字将其分配到不同的“桶里”来排序元素的。它是线性排序算法之一。
16)解释什么是递归算法?
递归算法是一个解决复杂问题的方法,将问题分解成较小的子问题,直到分解的足够小,可以轻松解决问题为止。通常,它涉及一个调用自身的函数。
17)提到递归算法的三个定律是什么?
所有递归算法必须遵循三个规律:
·递归算法必须有一个基点
·递归算法必须有一个趋向基点的状态变化过程
·递归算法必须自我调用
18)解释什么是冒泡排序算法?
冒泡排序算法也称为下沉排序。在这种类型的排序中,要排序的列表的相邻元素之间互相比较。如果它们按顺序排列错误,将交换值并以正确的顺序排列,直到最终结果“浮”出水面。
满意记得采纳哈