A. 向量平行公式是什么
a×b=xn-ym=0
向量垂直,平行的公式为:
若a,b是两个向量:a=(x,y)b=(m,n);
则a⊥b的充要条件是a·b=0,即(xm+yn)=0;
向量平行的公式为:a//b→a×b=xn-ym=0;
向量介绍
“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。
向量能够进入数学并得到发展,首先应从复数的几何表示谈起。18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。
B. 平面向量的垂直和平行公式
两个向量a,b平行:a=λb (b不是零向量);两个向量垂直:数量积为0,即a•b=0
坐标表示:a=(x1,y1),b=(x2,y2)
a//b当且仅当x1y2-x2y1=0,a⊥b当且仅当x1x2+y1y2=0
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
(2)坐标平行向量计算法则扩展阅读:
一、相关概念
零向量:长度等于0的向量叫做零向量,记作0。
相等向量:长度相等且方向相同的向量叫做相等向量。
平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量。
单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示。
相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
二、数乘运算性质
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。
用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)
设λ、μ是实数,那么满足如下运算性质:
(λμ)a= λ(μa)
(λ + μ)a= λa+ μa
λ(a±b) = λa± λb
(-λ)a=-(λa) = λ(-a)
|λa|=|λ||a|
C. 向量平行和垂直的公式都是什么着
1、向量垂直公式
向量a=(a1,a2),向量b=(b1,b2)
a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)
a垂直b:a1b1+a2b2=0
2、向量平行公式
向量a=(x1,y1),向量b=(x2,y2)
x1y2-x2y1=0
a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0
几何表示
向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
以上内容参考:网络-向量
D. 空间向量平行公式坐标公式是什么
空间向量平行公式坐标公式:d=|Ax0+By0+C|/√A^2+B^2。空间中具有大小和方向的量叫作空间向量。向量的大小叫作向量的长度或模(molus)。规定:长度为0的向量叫作零向量,记为0。
空间向量平行判断方法:
设一向量的坐标为(x,y,z),另外一向量的坐标为(a,b,c)。如果(x/a)=(y/b)=(z/c)=常数,则两向量平行,如果ax+by+cz=0,则两向量垂直。
如果设a=(x,y),b=(x',y')如果a•b=0(a和b的数量级)即xx'+yy'=0,则a⊥b。如果a×b=0,则向量a平行与向量b;λa=b,a与b也平行。
E. 向量平行的坐标公式
两个向量a,b平行:a=λb (b不是零向量);两个向量垂直:数量积为0,即a•b=0。
坐标表示:a=(x1,y1),b=(x2,y2)
a//b当且仅当x1y2-x2y1=0
a⊥b当且仅当x1x2+y1y2=0
在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得:a=xi+yj,我们把(x,y)叫做向量a的(直角)坐标,记作:a=(x,y)。
其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
(5)坐标平行向量计算法则扩展阅读:
如果e1和e2是同一平面内的两个不共线的非零向量,那么对该平面内的任一向量a,有且只有一对实数λ、μ,使a= λe1+ μe2。
给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c
混合积具有下列性质:
1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)
2、上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0
3、(abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)
F. 向量平行公式
平行向量与向量平行是不同的!
方向相同或相反的非零向量叫做平行向量。平行是指一种向量之间的相对关系;
而平行向量是指具有平行关系的两个或两个以上的向量。
零向量与任一向量平行。
向量平行的公式如下(转自网上
向量平行的等价条件
-2010年山东省高中教师全员研修)
1、当给定向量以有向线段的形式表示时
向量m与向量n平行<=>m=xn
(x为唯一存在的实数,向量n不为零向量).
运用这个结论的时候尤其要注意它需要满足的条件.由此也可引出平面内a,b,c三点共线
<=>向量ab//向量ac//向量bc
<=>对平面内任意一点o有,向量oc=a向量oa+b向量ob(其中满足a+b=1)
<=>a向量oa+b向量ob+c向量oc=零向量(其中满足a+b+c=0)
2、当给定向量以坐标的形式表示时
向量m(m1,m2)与向量n(n1,n2)平行<=>m1*n2—m2*n1=0.
这个推导过程是依据了正交分解(即在直角坐标系下,向量m与向量n的坐标分别为(m1,m2)、(n1,n2)),我们也可以把这个结论推广到一般的向量分解下,即不在直角坐标系下。例如:
已知向量m与向量n,在一组基底{a,
b}下的分解式分别m=m3a+m4b、n=n3a+n4n,即可理解为在以向量与向量的基线为坐标轴的坐标系下,向量m与向量n的坐标分别为(m3,m4)、(n3,n4),那么由上面的结论我们可以得到向量m(m3,m4)与向量n(n3,n4)平行<=>m3*n4—m4*n3=0.这个结论我们可以根据“向量m与向量n平行<=>m=xn
(x为唯一存在的实数,向量n不为零向量)”得到。
【注】但是要注意的是对于向量垂直的等价条件来说,不能引用到一般情况下。
G. 平行向量的公式是什么
平行向量的公式是a//b→a×b=xn-ym=0。向量最初被应用于物理学,很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊着名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用着名的平行四边形法则来得到。
平行向量的定义和计算
既有大小又有方向的量称为向量。向量AB向量常用有向线段AB表示。向量的大小叫向量的模,记为丨AB丨。平行向量其实就是共线向量,计算平行向量的和有两种情况。
方向相同,例如AB与CD共线,且方向相同,AB十CD的模等于丨AB丨+丨CD丨,把点C平移到B,向量AD即为所求。
方向相反,例如AB与CD平行且方向相反,且丨AB丨>|CD丨,和向量的模是丨AB丨一lCD丨,方向是AB的方向。
H. 平行向量坐标运算
向量a=(x1,y1)
向量b=(x2,y2)
若a//b则,
x1y2-x2y1=0
或先缩小一下范围得
y1/x1=y2/x2,再次去分母后回到上面的式子;
或
a=λb
{x1=λx2
{y1=λy2
x1y2=λx2y2=x2y1
I. 空间坐标向量平行公式
空间坐标向量平行公式:有两个坐标(x1,y1),(x,2y2),如果平行,则x1/x2=y1/y2。空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模。规定,长度为0的向量叫做零向量,记为0。模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。