导航:首页 > 源码编译 > c语言排序算法比较

c语言排序算法比较

发布时间:2022-08-22 13:32:12

㈠ 基于C语言的几种排序算法的分析

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):
1、稳定排序和非稳定排序
简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就
说这种排序方法是稳定的。反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,
则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,
a2,a3,a5就不是稳定的了。
2、内排序和外排序
在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
3、算法的时间复杂度和空间复杂度
所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
================================================================================
*/
/*
================================================
功能:选择排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
到倒数第二个数和最后一个数比较为止。
选择排序是不稳定的。算法复杂度O(n2)--[n的平方]
=====================================================
*/
void select_sort(int *x, int n)
{
int i, j, min, t;
for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/
{
min = i; /*假设当前下标为i的数最小,比较后再调整*/
for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/
{
if (*(x+j) < *(x+min))
{
min = j; /*如果后面的数比前面的小,则记下它的下标*/
}
}
if (min != i) /*如果min在循环中改变了,就需要交换数据*/
{
t = *(x+i);
*(x+i) = *(x+min);
*(x+min) = t;
}
}
}

/*
================================================
功能:直接插入排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
void insert_sort(int *x, int n)
{
int i, j, t;
for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/
{
/*
暂存下标为i的数。注意:下标从1开始,原因就是开始时
第一个数即下标为0的数,前面没有任何数,单单一个,认为
它是排好顺序的。
*/
t=*(x+i);
for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
{
*(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
}
*(x+j+1) = t; /*找到下标为i的数的放置位置*/
}
}

/*
================================================
功能:冒泡排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上
而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
求相反时,就将它们互换。
下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
位置k,这样可以减少外层循环扫描的次数。
冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
void bubble_sort(int *x, int n)
{
int j, k, h, t;
for (h=n-1; h>0; h=k) /*循环到没有比较范围*/
{
for (j=0, k=0; j<h; j++) /*每次预置k=0,循环扫描后更新k*/
{
if (*(x+j) > *(x+j+1)) /*大的放在后面,小的放到前面*/
{
t = *(x+j);
*(x+j) = *(x+j+1);
*(x+j+1) = t; /*完成交换*/
k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
}
}
}
}

/*
================================================
功能:希尔排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
一组,排序完成。
下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
以后每次减半,直到增量为1。
希尔排序是不稳定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
int h, j, k, t;
for (h=n/2; h>0; h=h/2) /*控制增量*/
{
for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/
{
t = *(x+j);
for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
{
*(x+k+h) = *(x+k);
}
*(x+k+h) = t;
}
}
}

/*
================================================
功能:快速排序
输入:数组名称(也就是数组首地址)、数组中起止元素的下标
================================================
*/
/*
====================================================
算法思想简单描述:
快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟
扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
它左右两边的数,直到基准点的左右只有一个元素为止。它是由
C.A.R.Hoare于1962年提出的。
显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的
函数是用递归实现的,有兴趣的朋友可以改成非递归的。
快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)
=====================================================
*/
void quick_sort(int *x, int low, int high)
{
int i, j, t;
if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
{
i = low;
j = high;
t = *(x+low); /*暂存基准点的数*/
while (i<j) /*循环扫描*/
{
while (i<j && *(x+j)>t) /*在右边的只要比基准点大仍放在右边*/
{
j--; /*前移一个位置*/
}
if (i<j)
{
*(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
i++; /*后移一个位置,并以此为基准点*/
}
while (i<j && *(x+i)<=t) /*在左边的只要小于等于基准点仍放在左边*/
{
i++; /*后移一个位置*/
}
if (i<j)
{
*(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/
j--; /*前移一个位置*/
}
}
*(x+i) = t; /*一遍扫描完后,放到适当位置*/
quick_sort(x,low,i-1); /*对基准点左边的数再执行快速排序*/
quick_sort(x,i+1,high); /*对基准点右边的数再执行快速排序*/
}
}

/*
================================================
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
时称之为堆。在这里只讨论满足前者条件的堆。
由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,
使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点
交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点
的堆,并对它们作交换,最后得到有n个节点的有序序列。
从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
实现排序的函数。
堆排序是不稳定的。算法时间复杂度O(nlog2n)。
*/
/*
功能:渗透建堆
输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
*/
void sift(int *x, int n, int s)
{
int t, k, j;
t = *(x+s); /*暂存开始元素*/
k = s; /*开始元素下标*/
j = 2*k + 1; /*右子树元素下标*/
while (j<n)
{
if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/
{
j++;
}
if (t<*(x+j)) /*调整*/
{
*(x+k) = *(x+j);
k = j; /*调整后,开始元素也随之调整*/
j = 2*k + 1;
}
else /*没有需要调整了,已经是个堆了,退出循环。*/
{
break;
}
}
*(x+k) = t; /*开始元素放到它正确位置*/
}

/*
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void heap_sort(int *x, int n)
{
int i, k, t;
int *p;
for (i=n/2-1; i>=0; i--)
{
sift(x,n,i); /*初始建堆*/
}
for (k=n-1; k>=1; k--)
{
t = *(x+0); /*堆顶放到最后*/
*(x+0) = *(x+k);
*(x+k) = t;
sift(x,k,0); /*剩下的数再建堆*/
}
}

void main()
{
#define MAX 4
int *p, i, a[MAX];
/*录入测试数据*/
p = a;
printf("Input %d number for sorting :\n",MAX);
for (i=0; i<MAX; i++)
{
scanf("%d",p++);
}
printf("\n");
/*测试选择排序*/

p = a;
select_sort(p,MAX);
/**/

/*测试直接插入排序*/
/*
p = a;
insert_sort(p,MAX);
*/

/*测试冒泡排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*测试快速排序*/
/*
p = a;
quick_sort(p,0,MAX-1);
*/
/*测试堆排序*/
/*
p = a;
heap_sort(p,MAX);
*/
for (p=a, i=0; i<MAX; i++)
{
printf("%d ",*p++);
}
printf("\n");
system("pause");
}

㈡ c语言的两种排序

下面是C语言里面常用的三种排序方法,但愿对楼主有帮助,
一、冒泡法(起泡法)
算法要求:用起泡法对10个整数按升序排序。
算法分析:如果有n个数,则要进行n-1趟比较。在第1趟比较中要进行n-1次相邻元素的两两比较,在第j趟比较中要进行n-j次两两比较。比较的顺序从前往后,经过一趟比较后,将最值沉底(换到最后一个元素位置),最大值沉底为升序,最小值沉底为降序。
算法源代码:
# include <stdio.h>
main()
{
int a[10],i,j,t;
printf("Please input 10 numbers: ");
/*输入源数据*/
for(i=0;i<10;i++)
scanf("%d",&a[i]);
/*排序*/
for(j=0;j<9;j++) /*外循环控制排序趟数,n个数排n-1趟*/
for(i=0;i<9-j;i++) /*内循环每趟比较的次数,第j趟比较n-j次*/
if(a[i]>a[i+1]) /*相邻元素比较,逆序则交换*/
{ t=a[i];
a[i]=a[i+1];
a[i+1]=t;
}
/*输出排序结果*/
printf("The sorted numbers: ");
for(i=0;i<10;i++)
printf("%d ",a[i]);
printf("\n");
}
算法特点:相邻元素两两比较,每趟将最值沉底即可确定一个数在结果的位置,确定元素位置的顺序是从后往前,其余元素可能作相对位置的调整。可以进行升序或降序排序。
算法分析:定义n-1次循环,每个数字比较n-j次,比较前一个数和后一个数的大小。然后交换顺序。
二、选择法
算法要求:用选择法对10个整数按降序排序。
算法分析:每趟选出一个最值和无序序列的第一个数交换,n个数共选n-1趟。第i趟假设i为最值下标,然后将最值和i+1至最后一个数比较,找出最值的下标,若最值下标不为初设值,则将最值元素和下标为i的元素交换。
算法源代码:
# include <stdio.h>
main()
{
int a[10],i,j,k,t,n=10;
printf("Please input 10 numbers:");
for(i=0;i<10;i++)
scanf("%d",&a[i]);
for(i=0;i<n-1;i++) /*外循环控制趟数,n个数选n-1趟*/
{
k=i; /*假设当前趟的第一个数为最值,记在k中 */
for(j=i+1;j<n;j++) /*从下一个数到最后一个数之间找最值*/
if(a[k]<a[j]) /*若其后有比最值更大的*/
k=j; /*则将其下标记在k中*/
if(k!=i) /*若k不为最初的i值,说明在其后找到比其更大的数*/
{ t=a[k]; a[k]=a[i]; a[i]=t; } /*则交换最值和当前序列的第一个数*/
}
printf("The sorted numbers: ");
for(i=0;i<10;i++)
printf("%d ",a[i]);
printf("\n");
}
算法特点:每趟是选出一个最值确定其在结果序列中的位置,确定元素的位置是从前往后,而每趟最多进行一次交换,其余元素的相对位置不变。可进行降序排序或升序排序。
算法分析:定义外部n-1次循环,假设第一个为最值,放在参数中,在从下一个数以后找最值若后面有比前面假设的最值更大的就放在k中,然后在对k进行分析。若k部位最初的i值。也就是假设的i不是最值,那么就交换最值和当前序列的第一个数
三、插入法
算法要求:用插入排序法对10个整数进行降序排序。
算法分析:将序列分为有序序列和无序列,依次从无序序列中取出元素值插入到有序序列的合适位置。初始是有序序列中只有第一个数,其余n-1个数组成无序序列,则n个数需进n-1次插入。寻找在有序序列中插入位置可以从有序序列的最后一个数往前找,在未找到插入点之前可以同时向后移动元素,为插入元素准备空间。
算法源代码:
# include <stdio.h>
main()
{
int a[10],i,j,t;
printf("Please input 10 numbers: ");
for(i=0;i<10;i++)
scanf("%d",&a[i]);
for(i=1;i<10;i++) /*外循环控制趟数,n个数从第2个数开始到最后共进行n-1次插入*/
{
t=a[i]; /*将待插入数暂存于变量t中*/
for( j=i-1 ; j>=0 && t>a[j] ; j-- ) /*在有序序列(下标0 ~ i-1)中寻找插入位置*/
a[j+1]=a[j]; /*若未找到插入位置,则当前元素后移一个位置*/
a[j+1]=t; /*找到插入位置,完成插入*/
}
printf("The sorted numbers: ");
for(i=0;i<10;i++)
printf("%d ",a[i]);
printf("\n");
}
算法特点:每趟从无序序列中取出第一个数插入到有序序列的合适位置,元素的最终位置在最后一趟插入后才能确定位置。也可是先用循环查找插入位置(可从前往后或从后往前),再将插入位置之后的元素(有序列中)逐个后移一个位置,最后完成插入。该算法的特点是在寻找插入位置的同时完成元素的移动。因为元素的移动必须从后往前,则可将两个操作结合在一起完成,提高算法效率。仍可进行升序或降序排序。
二、下面是三种排序的概念及其优缺点

冒泡排序
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],依此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n-1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,依此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
优点:稳定,比较次数已知;
缺点:慢,每次只能移动相邻两个数据,移动数据的次数多。

选择排序
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[1]与a[3]的值,若a[1]大于a[3]则交换两者的值,否则不变。再比较a[1]与a[4],依此类推,最后比较a[1]与a[n]的值。这样处理一轮后,a[1]的值一定是这组数据中最小的。再将a[2]与a[3]~a[n]以相同方法比较一轮,则a[2]的值一定是a[2]~a[n]中最小的。再将a[3]与a[4]~a[n]以相同方法比较一轮,依此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
优点:稳定,比较次数与冒泡排序一样,数据移动次数比冒泡排序少;
缺点:相对之下还是慢。

插入排序
已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来a[x]的位置这就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a)
优点:稳定,快;
缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。

㈢ C语言选择法排序

#include<stdio.h>

#defineM 5

void main()

{

int b[M],i,j,t,k;

for(i=0;i<M;i++)

scanf("%d",&b[i]);

for(i=0;i<M-1;i++)

{

for(k=i,j=i+1;j<M;j++)

if(b[k]<b[j])

k=j;

if(i!=k)

{

t=b[i];

b[i]=b[k];

b[k]=t;

}

}

for(i=0;i<M;i++)

printf("%d ",b[i]);

}

错在大括号位置加错了。

代码:

#include<stdio.h>

void SelectionSort(int *num,int n)

{

int i = 0;

int min = 0;

int j = 0;

int tmp = 0;

for(i = 0;i < n-1;i++)

{

min = i;//每次讲min置成无序组起始位置元素下标

for(j = i;j < n;j++)//遍历无序组,找到最小元素。

{

if(num[min]>num[j])

{

min = j;

}

}

if(min != i)//如果最小元素不是无序组起始位置元素,则与起始元素交换位置

{

tmp = num[min];

num[min] = num[i];

num[i] = tmp;

}

}

}

(此处空一行)

int main()

{

int num[6] = {5,4,3,2,9,1};

int i = 0;

SelectionSort(num,6);//这里需要将数列元素个数传入。有心者可用sizeof在函数内求得元素个数。

for(i = 0;i < 6;i++)

{

printf("%d ",num[i]);

}

return 0;

}

㈣ C语言选择排序法有哪些

1、稳定排序和非稳定排序
简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我
们就
说这种排序方法是稳定的。反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,
则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变
成a1,a4,
a2,a3,a5就不是稳定的了。
2、内排序和外排序
在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称
为外排序。
3、算法的时间复杂度和空间复杂度
所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
======================================================================
==========
*/
/*
================================================
功能:选择排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
到倒数第二个数和最后一个数比较为止。
选择排序是不稳定的。算法复杂度O(n2)--[n的平方]
=====================================================
*/
voidselect_sort(int*x,intn)
{
inti,j,min,t;
for(i=0;i<n-1;i++)/*要选择的次数:0~n-2共n-1次*/
{
min=i;/*假设当前下标为i的数最小,比较后再调整*/
for(j=i+1;j<n;j++)/*循环找出最小的数的下标是哪个*/
{
if(*(x+j)<*(x+min))
{
min=j;/*如果后面的数比前面的小,则记下它的下标*/
}
}
if(min!=i)/*如果min在循环中改变了,就需要交换数据*/
{
t=*(x+i);
*(x+i)=*(x+min);
*(x+min)=t;
}
}
}
/*
================================================
功能:直接插入排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,假设前面(n-1)[n>=2]个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
voidinsert_sort(int*x,intn)
{
inti,j,t;
for(i=1;i<n;i++)/*要选择的次数:1~n-1共n-1次*/
{
/*
暂存下标为i的数。注意:下标从1开始,原因就是开始时
第一个数即下标为0的数,前面没有任何数,单单一个,认为
它是排好顺序的。
*/
t=*(x+i);
for(j=i-1;j>=0&&t<*(x+j);j--)/*注意:j=i-1,j--,这里就是下标为i的数,在它
列中找插入位置。*/
{
*(x+j+1)=*(x+j);/*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都
放在最前面,j==-1,退出循环*/
}
*(x+j+1)=t;/*找到下标为i的数的放置位置*/
}
}
/*
================================================
功能:冒泡排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上
而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
求相反时,就将它们互换。
下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
位置k,这样可以减少外层循环扫描的次数。
冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
voidbubble_sort(int*x,intn)
{
intj,k,h,t;
for(h=n-1;h>0;h=k)/*循环到没有比较范围*/
{
for(j=0,k=0;j<h;j++)/*每次预置k=0,循环扫描后更新k*/
{
if(*(x+j)>*(x+j+1))/*大的放在后面,小的放到前面*/
{
t=*(x+j);
*(x+j)=*(x+j+1);
*(x+j+1)=t;/*完成交换*/
k=j;/*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
}
}
}
}
/*
================================================
功能:希尔排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
一组,排序完成。
下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
以后每次减半,直到增量为1。
希尔排序是不稳定的。
=====================================================
*/
voidshell_sort(int*x,intn)
{
inth,j,k,t;
for(h=n/2;h>0;h=h/2)/*控制增量*/
{
for(j=h;j<n;j++)/*这个实际上就是上面的直接插入排序*/
{
t=*(x+j);
for(k=j-h;(k>=0&&t<*(x+k));k-=h)
{
*(x+k+h)=*(x+k);
}
*(x+k+h)=t;
}
}
}
/*
================================================
功能:快速排序
输入:数组名称(也就是数组首地址)、数组中起止元素的下标
================================================
*/
/*
====================================================
算法思想简单描述:
快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟
扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
它左右两边的数,直到基准点的左右只有一个元素为止。它是由
C.A.R.Hoare于1962年提出的。
显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的
函数是用递归实现的,有兴趣的朋友可以改成非递归的。
快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)
=====================================================
*/
voidquick_sort(int*x,intlow,inthigh)
{
inti,j,t;
if(low<high)/*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为
low的元素为基准点*/
{
i=low;
j=high;
t=*(x+low);/*暂存基准点的数*/
while(i<j)/*循环扫描*/
{
while(i<j&&*(x+j)>t)/*在右边的只要比基准点大仍放在右边*/
{
j--;/*前移一个位置*/
}
if(i<j)
{
*(x+i)=*(x+j);/*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
i++;/*后移一个位置,并以此为基准点*/
}
while(i<j&&*(x+i)<=t)/*在左边的只要小于等于基准点仍放在左边*/
{
i++;/*后移一个位置*/
}
if(i<j)
{
*(x+j)=*(x+i);/*上面的循环退出:即出现比基准点大的数,放到右边*/
j--;/*前移一个位置*/
}
}
*(x+i)=t;/*一遍扫描完后,放到适当位置*/
quick_sort(x,low,i-1); /*对基准点左边的数再执行快速排序*/
quick_sort(x,i+1,high); /*对基准点右边的数再执行快速排序*/
}
}
/*
================================================
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================

㈤ c语言做各种排序算法比较程序怎么做

已经有时间读啦,自己测就用大量数据排序计时(只即排序时间,别记读取和输出时间)啦

㈥ c语言 比较法排序区别

1、稳定排序和非稳定排序的不同

简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。

2、内排序和外排序的不同

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;

在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度不同

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

㈦ c语言考试。问数组,常见的数组排序算法有那几种选择一个描述过程。

有插入排序:直接插入排序、折半插入排序、希尔排序;交换排序:冒泡排序、快速排序;选择排序:简单选择排序、堆排序;归并排序;基数排序。
常用冒泡排序的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面(数组由小到大排序)。即首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后,此时第一趟结束,在最后的数必是所有数中的最大数。重复以上过程,仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到最大数前的一对相邻数,将小数放前,大数放后,第二趟结束,在倒数第二个数中得到一个新的最大数。如此下去,直至最终完成排序。
由于在排序过程中总是小数往前放,大数往后放,相当于气泡往上升,所以称作冒泡排序。
用二重循环实现,外循环变量设为i,内循环变量设为j。外循环重复9次,内循环依次重复9,8,...,1次。每次进行比较的两个元素都是与内循环j有关的,它们可以分别用a[j]和a[j+1]标识,i的值依次为1,2,...,9,对于每一个i,
j的值依次为1,2,...10-i。
代码:
for(i=0;
i<NUM-1;
i++)
/*外循环:控制比较趟数*/
for(j=NUM-1;
j>i;
j--)
/*内循环:进行每趟比较*/
if(data[j]<data[j-1])
/*如果data[j]大于data[j-1],交换两者的位置*/
{temp=data[j];
data[j]=data[j-1];
data[j-1]=temp;
};

㈧ c语言中排序方法

1、冒泡排序(最常用)
冒泡排序是最简单的排序方法:原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。(注意每一轮都是从a[0]开始比较的)

以从小到大排序为例,第一轮比较后,所有数中最大的那个数就会浮到最右边;第二轮比较后,所有数中第二大的那个数就会浮到倒数第二个位置……就这样一轮一轮地比较,最后实现从小到大排序。

2、鸡尾酒排序
鸡尾酒排序又称双向冒泡排序、鸡尾酒搅拌排序、搅拌排序、涟漪排序、来回排序或快乐小时排序, 是冒泡排序的一种变形。该算法与冒泡排序的不同处在于排序时是以双向在序列中进行排序。
原理:数组中的数字本是无规律的排放,先找到最小的数字,把他放到第一位,然后找到最大的数字放到最后一位。然后再找到第二小的数字放到第二位,再找到第二大的数字放到倒数第二位。以此类推,直到完成排序。

3、选择排序
思路是设有10个元素a[1]-a[10],将a[1]与a[2]-a[10]比较,若a[1]比a[2]-a[10]都小,则不进行交换。若a[2]-a[10]中有一个以上比a[1]小,则将其中最大的一个与a[1]交换,此时a[1]就存放了10个数中最小的一个。同理,第二轮拿a[2]与a[3]-a[10]比较,a[2]存放a[2]-a[10]中最小的数,以此类推。

4、插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素*
一般来说,插入排序都采用in-place在数组上实现。
具体算法描述如下:
⒈ 从第一个元素开始,该元素可以认为已经被排序
⒉ 取出下一个元素,在已经排序的元素序列中从后向前扫描
⒊ 如果该元素(已排序)大于新元素,将该元素移到下一位置
⒋ 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
⒌ 将新元素插入到下一位置中
⒍ 重复步骤2~5

㈨ 排序算法性能比较(数据结构)C语言程序

这题你只要把每个算法的程序代码看一下,在计算下就行
冒泡排序:两个循环,从1加到N,(1+N)N/2
=
500500,最坏交换情况是每次判断都要交换,既500500*3次
选择排序:也是两个循环,比较次数跟冒泡排序一样500500,但是这个只要底层循环交换,既只需1000*3
=
3000次赋值。
插入排序:循环次数一样500500,但是这个最坏情况是每比较一次就赋值一次,既需500500次赋值
希尔排序:时间复杂度是N^1.3倍,比较次数和赋值应该是1000^1.3次方。
归并排序和快速排序,你去查查它的时间复杂度是怎么算,O(lgN*N),好像有系数,算法导论那本书上有,现在不记得是多少了。
希望能帮到你,

阅读全文

与c语言排序算法比较相关的资料

热点内容
windows下编译python 浏览:607
linux蓝牙连接 浏览:898
安卓qq邮箱格式怎么写 浏览:431
如何电信租用服务器吗 浏览:188
编程中计算根号的思维 浏览:183
可爱的程序员16集背景音乐 浏览:448
软件代码内容转换加密 浏览:797
什么app看电视不要钱的 浏览:16
乌班图怎么安装c语言编译器 浏览:280
plc通讯块编程 浏览:923
我的世界服务器怎么清地皮 浏览:422
ftp服务器如何批量改名 浏览:314
网易我的世界服务器成员如何传送 浏览:268
公司云服务器远程访问 浏览:633
法哲学pdf 浏览:638
清大阅读app是什么 浏览:447
怎么用qq浏览器整体解压文件 浏览:587
肺组织压缩15 浏览:271
安卓手机为什么换电话卡没反应 浏览:798
诸子集成pdf 浏览:340