‘壹’ 遗传算法的现状
进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显着提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。D.H.Ackley等提出了随机迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
1992年,英国格拉斯哥大学的李耘(Yun Li)指导博士生将基于二进制基因的遗传算法扩展到七进制、十进制、整数、浮点等的基因,以便将遗传算法更有效地应用于模糊参量,系统结构等的直接优化,于1997年开发了可能是世界上最受欢迎的、也是最早之一的遗传/进化算法的网上程序 EA_demo,以帮助新手在线交互式了解进化计算的编码和工作原理 ,并在格拉斯哥召开第二届IEE/IEEE遗传算法应用国际会议,于2000年组织了由遗传编程(Genetic Programming)发明人斯坦福的 John Koza 等参加的 EvoNet 研讨会,探索融合GA与GP结构寻优,超越固定结构和数值优化的局限性。
国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
‘贰’ 遗传算法的迭代次数是怎么确定的,与什么有关
1. 遗传算法简介
遗传算法是用于解决最优化问题的一种搜索算法,算法的整体思路是建立在达尔文生物进化论“优胜劣汰”规律的基础上。它将生物学中的基因编码、染色体交叉、基因变异以及自然选择等概念引入最优化问题的求解过程中,通过不断的“种群进化”,最终得到问题的最优解。
2. 遗传算法实现步骤
在讲下面几个基于生物学提出的概念之前,首先我们需要理解为什么需要在最优化问题的求解中引入生物学中的各种概念。
假设我们需要求一个函数的最大值,但这个函数异常复杂以至于无法套用一般化的公式,那么就会想到:如果可以将所有可能的解代入方程,那么函数最大值所对应的那个解就是问题的最优解。但是,对于较复杂的函数来说,其可能的解的个数的数量级是我们所无法想象的。因此,我们只好退而求其次,只代入部分解并在其中找到最优解。那么这样做的核心就在于如何设定算法确定部分解并去逼近函数的最优解或者较好的局部最优解。
遗传算法就是为了解决上述问题而诞生的。假设函数值所对应的所有解是一个容量超级大的种群,而种群中的个体就是一个个解,接下去遗传算法的工作就是让这个种群中的部分个体去不断繁衍,在繁衍的过程中一方面会发生染色体交叉而产生新的个体。另一方面,基因变异也会有概率会发生并产生新的个体。接下去,只需要通过自然选择的方式,淘汰质量差的个体,保留质量好的个体,并且让这个繁衍的过程持续下去,那么最后就有可能进化出最优或者较优的个体。这么看来原来最优化问题居然和遗传变异是相通的,而且大自然早已掌握了这样的机制,这着实令人兴奋。为了将这种机制引入最优化问题并利用计算机求解,我们需要将上述提到的生物学概念转化为计算机能够理解的算法机制。
下面介绍在计算机中这种遗传变异的机制是如何实现的:
基因编码与解码:
在生物学中,交叉与变异能够实现是得益于染色体上的基因,可以想象每个个体都是一串超级长的基因编码,当两个个体发生交叉时,两条基因编码就会发生交换,产生的新基因同时包含父亲和母亲的基因编码。在交叉过程中或者完成后,某些基因点位又会因为各种因素发生突变,由此产生新的基因编码。当然,发生交叉和变异之后的个体并不一定优于原个体,但这给了进化(产生更加优秀的个体)发生的可能。
因此,为了在计算机里实现交叉和变异,就需要对十进制的解进行编码。对于计算机来说其最底层的语言是由二进制0、1构成的,而0、1就能够被用来表示每个基因点位,大量的0、1就能够表示一串基因编码,因此我们可以用二进制对十进制数进行编码,即将十进制的数映射到二进制上。但是我们并不关心如何将十进制转换为二进制的数,因为计算机可以随机生成大量的二进制串,我们只需要将办法将二进制转化为十进制就可以了。
二进制转换为十进制实现方式:
假设,我们需要将二进制映射到以下范围:
首先,将二进制串展开并通过计算式转化为[0,1]范围内的数字:
将[0,1]范围内的数字映射到我们所需要的区间内:
交叉与变异:
在能够用二进制串表示十进制数的基础上,我们需要将交叉与变异引入算法中。假设我们已经获得两条二进制串(基因编码),一条作为父亲,一条作为母亲,那么交叉指的就是用父方一半的二进制编码与母方一半的二进制编码组合成为一条新的二进制串(即新的基因)。变异则指的是在交叉完成产生子代的过程中,二进制串上某个数字发生了变异,由此产生新的二进制串。当然,交叉与变异并不是必然发生的,其需要满足一定的概率条件。一般来说,交叉发生的概率较大,变异发生的概率较小。交叉是为了让算法朝着收敛的方向发展,而变异则是为了让算法有几率跳出某种局部最优解。
自然选择:
在成功将基因编码和解码以及交叉与变异引入算法后,我们已经实现了让算法自动产生部分解并优化的机制。接下去,我们需要解决如何在算法中实现自然选择并将优秀的个体保留下来进而进化出更优秀的个体。
首先我们需要确定个体是否优秀,考虑先将其二进制串转化为十进制数并代入最初定义的目标函数中,将函数值定义为适应度。在这里,假设我们要求的是最大值,则定义函数值越大,则其适应度越大。那是否在每一轮迭代过程中只需要按照适应度对个体进行排序并选出更加优秀的个体就可以了呢?事实上,自然选择的过程中存在一个现象,并没有说优秀的个体一定会被保留,而差劲的个体就一定被会被淘汰。自然选择是一个概率事件,越适应环境则生存下去的概率越高,反之越低。为了遵循这样的思想,我们可以根据之前定义的适应度的大小给定每个个体一定的生存概率,其适应度越高,则在筛选时被保留下来的概率也越高,反之越低。
那么问题就来了,如何定义这种生存概率,一般来说,我们可以将个体适应度与全部个体适应度之和的比率作为生存概率。但我们在定义适应度时使用函数值进行定义的,但函数值是有可能为负的,但概率不能为负。因此,我们需要对函数值进行正数化处理,其处理方式如下:
定义适应度函数:
定义生存概率函数:
注:最后一项之所以加上0.0001是因为不能让某个个体的生存概率变为0,这不符合自然选择中包含的概率思想。
3. 遗传算例
在这里以一个比较简单的函数为例,可以直接判断出函数的最小值为0,最优解为(0,0)
若利用遗传算法进行求解,设定交叉概率为0.8,变异概率为0.005,种群内个体数为2000,十进制数基因编码长度为24,迭代次数为500次。
从遗传算法收敛的动态图中可以发现,遗传算法现实生成了大量的解,并对这些解进行试错,最终收敛到最大值,可以发现遗传算法的结果大致上与最优解无异,结果图如下:
4. 遗传算法优缺点
优点:
1、 通过变异机制避免算法陷入局部最优,搜索能力强
2、 引入自然选择中的概率思想,个体的选择具有随机性
3、 可拓展性强,易于与其他算法进行结合使用
缺点:
1、 遗传算法编程较为复杂,涉及到基因编码与解码
2、 算法内包含的交叉率、变异率等参数的设定需要依靠经验确定
3、 对于初始种群的优劣依赖性较强
‘叁’ 遗传算法<sup>[1,]</sup>
遗传算法,又称基因算法(Genetic Algorithm,简称GA),也是一种启发式蒙特卡洛优化算法。遗传算法最早是由Holland(1975)提出,它模拟了生物适者生存、优胜劣汰的进化过程,具有不依赖于初始模型的选择、不容易陷入局部极小、在反演过程中不用计算偏导数矩阵等优点。遗传算法最早由Stoffa和Sen(1991)用于地震波的一维反演,之后在地球物理资料的非线性反演中得到广泛的应用。GA算法对模型群体进行追踪、搜索,即模型状态通过模型群体传送,具有比模拟退火法更大、更复杂的“记忆”,潜力更大。
遗传算法在反演中的基本思路和过程是:
(1)将生物体看成模型,模型参数看成染色体,有多少个模型的参数就有多少个染色体。对每个模型的参数(染色体)用二进制进行编码,这个编码就是基因。
(2)随机生成一个模型群体(相当于生物的种群),然后在模型群体中进行繁殖,通过母本的选择、交换和变异等遗传操作产生下一代,然后保留较好基因,淘汰较差基因。
(3)通过一代一代的繁殖优胜劣汰的进化过程,最后所剩下的种群基本上都是最优的基因,种群趋于一致。所谓群体“一致”,即群体目标函数的方差或标准差很小,或者群体目标函数的均值接近于极值(可能是极大值或极小值),从而获得非线性反演问题所对应的最优解或近似最优解。
下面以一个实例来简述遗传算法的基本过程。
[例1]设m是正整数,且0≤m≤127,求方程φ(m)=m2的极大值。
这个例子极为简单,只有一个模型参数,因此只有一条染色体,目标函数的极值是极大值(此例子来自阮百尧课件)。遗传算法通过以下7个步骤来实现:
(1)模型参数二进制编码。
每个模型参数就是一条染色体,把十进制的模型参数表示为二进制,这就是基因。首先确定二进制码的长度(基因的长度):
2N=[mmax(i)-mmin(i)]/Δm(i) (8.20)
其中:N为第i条染色体基因的长度(也就是第i个模型参数的二进制码位数);[mmin(i),mmax(i)]为第i个模型参数的取值范围;Δm(i)为第i个模型参数的分辨率。这样就把模型参数离散化了,它只能按Δm(i)的整数倍变化。基因的长度按下式计算:
地球物理反演教程
其中:c为实数;N为基因长度,是整数;int[ ]为取整函数。上式表示如果c不是整数,那么基因长度N就是对c取整后加1,这样保证最小分辨率。
基因的编码按下式进行:
地球物理反演教程
其中:式(8.22)是编码公式;k为基因编码的十进制数,是整数;int[ ]为取整函数。把k转化为二进制就是基因的编码。解码是按照式(8.23)进行的。首先把一个基因的二进制编码转化为十进制数k,然后按式(8.23)可以计算出第i个模型参数m(i)的十进制值。
例如:电阻率参数ρ(1),它的变化范围为10~5000Ω·m,分辨率为2Ω·m,设当前参数ρ(1)=133Ω·m,按式(8.21)计算得
c=11.28482,N=12
所以二进制基因长度为13位。
利用式(8.22)计算基因编码k的十进制数:
k=int[(133-10)/2]=61
把它转化为二进制数为:000000111101。所以ρ(1)=133 的二进制基因编码为:000000111101。
解码过程就是把二进制基因编码变为十进制数k后用式(8.23)计算:
ρ(1)=10+61×2=132(Ω·m)
注意:基因编码并不是直接把电阻率值变为二进制。此外,133这个值在基因里不会出现,因为分辨率是2,所以表示为最接近的132。
对于[例1]问题来说,选分辨率为1,0~127用二进制编码需7位。
(2)产生初始模型种群。
生物繁殖进化需要一定数量的生物体种群,因此遗传算法开始时需要一定数量的初始模型。为保证基因的多样性,随机产生大量的初始模型作为初始种群,按照上面的编码方式进行编码。个体在模型空间中应分布均匀,最好是模型空间各代表区域均有成员。初始模型群体大,有利于搜索,但太大会增加计算量。
为保证算法收敛,在初始模型群体中,有时候应增加各位都为0和都为1的成员。遗传算法就是在这个初始模型种群的基础上进行繁殖,进化求解的。
对于[例1]问题来说,模型空间是0~127个数字,这样初始种群最多具有128个个体。为了简单,随机选择4个个体作为初始种群。初始种群的编码、目标函数值见表8.1。
表8.1 初始种群编码表
(3)模型选择。
为了生成新一代模型,需要选择较优的个体进行配对。生物进化按照自然选择、优胜劣汰的准则进行。对应地,遗传算法按照一定的准则来选择母本(两个),然后进行配对繁殖下一代模型,这个选择称为模型选择。模型配对最基本的方法是随机采样,用各模型的目标函数值对所有模型目标函数的平均值的比值定义繁殖概率,即
地球物理反演教程
其中:p(mi)为繁殖概率;φ(mi)为第i个模型的目标函数;φAVG为目标函数的平均值。对于极小化问题来说,规定目标函数值高于平均值的不传代;对于极大化问题来说,反之即可。
就[例1]来说,要求目标函数取极大值,所以规定目标函数小于平均值的模型不传代,大于它的可以传代。对第一代,为了防止基因丢失,可先不舍去繁殖概率小的模型,让它与概率大的模型配对。如:本例中70与56配对,101与15配对产生子代,见表8.2。
表8.2 基因交换表
(4)基因交换。
将配对的两个亲本模型的部分染色体相互交换,其中交换点可随机选择,形成两个新的子代(见表8.2)。两个染色体遗传基因的交换过程是遗传算法的“繁殖”过程,是母本的重组过程。
为了使染色体的基因交换比较彻底,Stoffa等人提出了一个交换概率px来控制选择操作的效果。如果px的值较小,那么交换点的位置就比较靠低位,这时的交换操作基本是低位交换,交换前后模型的染色体变化不是太大。如果px的值较大,那么交换点的位置就比较靠高位,此时的交换操作可以在较大的染色体空间进行,交换前后模型数值变化可以很大。
在[例1]中:15、101和56、70作为母本通过交换繁殖出子代5、6、111、120。所选择的基因交换位置见表8.2。有下划线的,是要交换的基因位置。
(5)更新。
母本模型和子本模型如何选择保留一定数量作为新的母本,就是模型更新。不同的策略会导致不同的结果。一般而言,若产生的新一代模型较好,则选择新一代模型而淘汰上一代模型。否则,则必须根据一定的更新概率pu来选择上一代模型来取代新一代中某些较劣的模型。
经过更新以后,繁殖时对子代再进行优胜劣汰的选择。对于极大值问题,大于目标函数平均值的子代可以繁殖,小于目标函数平均值的子代不能繁殖。由于新的种群能繁殖的个体数量减小了,所以要多繁殖几次,维持种群个体的数量保持平衡。
在[例1]中,子代较好,所以完全淘汰上一代模型,完全用子代作为新的母本。选择子代目标函数最大的两个模型进行繁殖,分别是111、120。
(6)基因变异。
在新的配对好的母本中,按一定比例随机选择模型进行变异,变异操作就是模拟自然界中的环境因素,就是按比较小的变异概率pm将染色体某位或某几位的基因发生突变(即将0变为1或将1变为0)。
变异操作的作用是使原来的模型发生某些变化,从而成为新的个体。这样可使群体增加多样性。变异操作在遗传算法中也起着至关重要的作用。实际上,由于搜索空间的性质和初始模型群体的优劣,遗传算法搜索过程中往往会出现所谓的“早熟收敛”现象,即在进化过程中早期陷入局部解而中止进化。采用合适的变异策略可提高群体中个体的多样性,从而防止这种现象的出现,有助于模型跳出局部极值。表8.3为[例1]的基因变异繁殖表。
表8.3 基因变异繁殖表
在[例1]中,用111、120分别繁殖两次,形成4个子代,维持种群数量平衡。随机选择120进行变异,变异的位数也是随机的。这里把它的第2位进行变异,即从1变为0,繁殖后形成子代为:70、110、121、127。可以看出新的子代比初始种群要好得多,其中甚至已经出现了最优解。如果对于地球物理的极小值问题,我们可以预先设置一个拟合精度,只要在种群中出现一个达到拟合精度的模型就可以终止反演了。
(7)收敛。
重复(3)~(6)的步骤,模型群体经多次选择、交换、更新、变异后,种群个体数量大小不变,模型目标函数平均值趋于稳定,最后聚集在模型空间中一个小范围内,则找到了全局极值对应的解,使目标函数最大或最小的模型就是全局最优模型。
对于具有多解性的地球物理反演问题来说,通过这一步有可能找到满足拟合精度的多个模型,对于实际反演解释、推断具有较高的指导意义。
遗传算法中的各种概率包括交换概率px、变异概率pm以及更新概率pu,这些参数的选择与设定目前尚无统一的理论指导,多数都视具体问题而定。Stoffa等(1991)的研究表明,适中的交换概率(px≈0.6)、较小的变异概率(pm≈0.01)和较大的更新概率(pu≈0.9),遗传算法的性能较优。
与模拟退火反算法相同,遗传算法与传统的线性反演方法相比,该方法具有:不依赖初始模型的选择、能寻找全局最小点而不陷入局部极小、在反演过程中不用计算雅克比偏导数矩阵等优点。另外,遗传算法具有并行性,随着并行计算和集群式计算机技术的发展,该算法将会得到越来越广泛的研究与应用。
但是遗传算法作为类蒙特卡洛算法同样需要进行大量的正演计算,种群个体数量越大,繁衍代数越多,则计算量越大。所以和前面的最小二乘法相比,速度不是它的优势。
‘肆’ 遗传算法研究进展
遗传算法[56,53]研究的兴起是在20世纪80年代末和90年代初期,但它的历史起源可追溯到20世纪60年代初期。早期的研究大多以对自然遗传系统的计算机模拟为主。早期遗传算法的研究特点是侧重于对一些复杂的操作的研究。虽然其中像自动博弈、生物系统模拟、模式识别和函数优化等给人以深刻的印象,但总的来说这是一个无明确目标的发展时期,缺乏带有指导性的理论和计算工具的开拓。这种现象直到20世纪70年代中期由于Holland和De Jong的创造性研究成果的发表才得到改观。当然,早期的研究成果对于遗传算法的发展仍然有一定的影响,尤其是其中一些有代表性的技术和方法已为当前的遗传算法所吸收和发展。
在遗传算法作为搜索方法用于人工智能系统中之前,已有不少生物学家用计算机来模拟自然遗传系统。尤其是Fraser的模拟研究,他于1962年提出了和现在的遗传算法十分相似的概念和思想。但是,Fraser和其他一些学者并未认识到自然遗传算法可以转化为人工遗传算法。Holland教授及其学生不久就认识到这一转化的重要性,Holland认为比起寻找这种或那种具体的求解问题的方法来说,开拓一种能模拟自然选择遗传机制的带有一般性的理论和方法更有意义。在这一时期,Holland不但发现了基于适应度的人工遗传选择的基本作用,而且还对群体操作等进行了认真的研究。1965年,他首次提出了人工遗传操作的重要性,并把这些应用于自然系统和人工系统中。
1967年,Bagley在他的论文中首次提出了遗传算法(genetic algorithm)这一术语,并讨论了遗传算法在自动博弈中的应用。他所提出的包括选择、交叉和变异的操作已与目前遗传算法中的相应操作十分接近。尤其是他对选择操作做了十分有意义的研究。他认识到,在遗传进化过程的前期和后期,选择概率应合适地变动。为此,他引入了适应度定标(scaling)概念,这是目前遗传算法中常用的技术。同时,他也首次提出了遗传算法自我调整概念,即把交叉和变异的概率融于染色体本身的编码中,从而可实现算法自我调整优化。尽管Bagley没有对此进行计算机模拟实验,但这些思想对于后来遗传算法的发展所起的作用是十分明显的。
在同一时期,Rosenberg也对遗传算法进行了研究,他的研究依然是以模拟生物进化为主,但他在遗传操作方面提出了不少独特的设想。1970年Cavicchio把遗传算法应用于模式识别中。实际上他并未直接涉及到模式识别,而仅用遗传算法设计一组用于识别的检测器。Cavicchio对于遗传操作以及遗传算法的自我调整也做了不少有特色的研究。
Weinberg于1971年发表了题为《活细胞的计算机模拟》的论文。由于他和Rosenberg一样注意于生物遗传的模拟,所以他对遗传算法的贡献有时被忽略。实际上,他提出的多层次或多级遗传算法至今仍给人以深刻的印象。
第一个把遗传算法用于函数优化的是Hollstien。1971年他在论文《计算机控制系统中的人工遗传自适应方法》中阐述了遗传算法用于数字反馈控制的方法。实际上,他主要是讨论了对于二变量函数的优化问题。其中,对于优势基因控制、交叉和变异以及各种编码技术进行了深入的研究。
1975年在遗传算法研究的历史上是十分重要的一年。这一年,Holland出版了他的着名专着《自然系统和人工系统的适配》。该书系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极为重要的模式理论(schemata theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。直到这时才知道遗传操作到底在干什么,为什么又干得那么出色,这对于以后陆续开发出来的遗传操作具有不可估量的指导作用。
同年,De Jong完成了他的重要论文《遗传自适应系统的行为分析》。他在该论文中所做的研究工作可看作是遗传算法发展进程中的一个里程碑,这是因为他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论迄今仍具有普遍的指导意义。
进入20世纪80年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显着提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习(Genetic Base Machine Learning),这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其他智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用。五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,既同遗传算法具有相同之处,也有各自的特点。
随着遗传算法研究和应用的不断深入和发展,一系列以遗传算法为主题的国际会议十分活跃。从1985年开始,国际遗传算法会议,即ICGA(International Conference on Genetic Algorithm)每两年举行一次。在欧洲,从1990年开始也每隔一年举办一次类似的会议,即 PPSN(Parallel Problem Solving from Nature)会议。除了遗传算法外,大部分有关ES和EP的学术论文也出现在PPSN中。另外,以遗传算法的理论基础为中心的学术会议有FOGA(Foundation of Genetic Algorithm)。它也是从1990年开始,隔年召开一次。这些国际学术会议论文集中反映了遗传算法近些年来的最新发展和动向。
‘伍’ 遗传算法都能干啥啊
遗传算法的应用有很多,一般用于解决工程优化问题。像选址问题、排班问题、路线优化、参数优化、函数求极值等等
‘陆’ 如何通俗易懂地解释遗传算法
遗传算法,核心是达尔文优胜劣汰适者生存的进化理论的思想。
我们都知道一个种群,通过长时间的繁衍,种群的基因会向着更适应环境的趋势进化,牛B个体的基因被保留,后代越来越多,适应能力低个体的基因被淘汰,后代越来越少。经过几代的繁衍进化,留下来的少数个体,就是相对能力最强的个体了。
那么在解决一些问题的时候,我们能不能学习这样的思想,比如先随机创造很多很多的解,然后找一个靠谱的评价体系,去筛选比较好的解,再用这些好的解像生小宝宝一样生一堆可能更好的解,然后再筛再生,反复弄个几代,得到的说不定就是近似最优解哟
说干就干,有一个经典组合问题叫“背包问题”,我们拿这种思路来试试
“背包问题(Knapsack Problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。”
这个问题的衍生简化问题“0-1背包问题” 增加了限制条件:每件物品只有一件,可以选择放或者不放,更适合我们来举例
这样的问题如果数量少,当然最好选择穷举法
比如一共3件商品,用0表示不取,1表示取,那么就一共有
000 001 010
011 100 101
110 111
这样方案,然后让计算机去累加和,与重量上限比较,留下来的解里取最大即可。
‘柒’ 请教计算机高手,关于遗传算法问题
这个容易,就是使用原样本数据,很据复制,突变,片段交换等方法生成新的数据样本,只不过不用像遗传算法那样进行遗传选择而已。
‘捌’ 遗传算法有哪些方向
遗传算法研究方向主要有以下几个方面:
1. 遗传算法基础理论研究
在遗传算法中,群体规模和遗传算子的控制参数的选取 是必要的试验参数。
遗传算法的收敛也是遗传算法基础理论研究方向之一。
2. 遗传算法的分类系统
分类系统属于基于遗传算法的机器学习中的一类,包括一个简单 的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统 。
分类系统被人们越来越多地应用在科学、工程和经济领域中,是目 前遗传算法研究中一个十分活跃的领域。
3. 分布并行遗传算法
分布并行遗传算 法的研究表明,只要通过保持多个群体和恰当控制群体间的相互作用 来模拟并行执行过程,即使不使用并行计算机,也能提高算法的执行效 率。
4. 遗传进化算法
模拟自然进化过程可以产生鲁棒的计算机算法--进化算法。其余两种算法是进化规划和进化策略 。
5. 遗传神经网络
包括连接权、网络结构和学习规则的进化。