A. Rsa是什么意思
RSA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
1973年,在英国政府通讯总部工作的数学家克利福德·柯克斯(Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被发表。
(1)rsa私钥加密算法扩展阅读
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解。
假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。 RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。人们已能分解多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。
B. 网络安全 简述RSA算法的原理和特点
1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。
它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi
Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数( 大于 100
个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个
大素数的积。
密钥对的产生。选择两个大素数,p 和q 。计算:
n = p * q
然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。最后,利用
Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互质。数e和
n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。
加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s
,其中 2^s <= n, s 尽可能的大。对应的密文是:
ci = mi^e ( mod n ) ( a )
解密时作如下计算:
mi = ci^d ( mod n ) ( b )
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )
式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先作 HASH 运算。
RSA 的安全性。
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因
为没有证明破解
RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成
为大数分解算法。目前, RSA
的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现
在,人们已能分解140多个十进制位的大素数。因此,模数n
必须选大一些,因具体适用情况而定。
RSA的速度。
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬
件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
RSA的选择密文攻击。
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装(
Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上
,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使
用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议
,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息
签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash
Function
对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方
法。
RSA的公共模数攻击。
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的
情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就
可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d
,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无
需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高
RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。
但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研
究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为
人们接受,普遍认为是目前最优秀的公钥方案之一。RSA
的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难
度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数
人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次
一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大
数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(
Secure Electronic Transaction
)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。
DSS/DSA算法
Digital Signature Algorithm
(DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(Digital Signature
Standard)。算法中应用了下述参数:
p:L bits长的素数。L是64的倍数,范围是512到1024;
q:p - 1的160bits的素因子;
g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1;
x:x < q,x为私钥 ;
y:y = g^x mod p ,( p, q, g, y )为公钥;
H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。
p, q,
g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及
验证协议如下:
1. P产生随机数k,k < q;
2. P计算 r = ( g^k mod p ) mod q
s = ( k^(-1) (H(m) + xr)) mod q
签名结果是( m, r, s )。
3. 验证时计算 w = s^(-1)mod q
u1 = ( H( m ) * w ) mod q
u2 = ( r * w ) mod q
v = (( g^u1 * y^u2 ) mod p ) mod q
若v = r,则认为签名有效。
DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特
点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们
是否是随机产生的,还是作了手脚。RSA算法却作不到。
本文来自CSDN博客,
C. rsa加密解密算法
1978年就出现了这种算法,它是第一个既能用于数据加密
也能用于数字签名的算法。它易于理解和操作,也很流行。算
法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和
Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。
RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数
( 大于 100个十进制位)的函数。据猜测,从一个密钥和密文
推断出明文的难度等同于分解两个大素数的积。
密钥对的产生:选择两个大素数,p 和q 。计算:
n = p * q
然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 )
互质。最后,利用Euclid 算法计算解密密钥d, 满足
e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )
其中n和d也要互质。数e和
n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任
何人知道。 加密信息 m(二进制表示)时,首先把m分成等长数据
块 m1 ,m2,..., mi ,块长s,其中 2^s <= n, s 尽可能的大。对
应的密文是:
ci = mi^e ( mod n ) ( a )
解密时作如下计算:
mi = ci^d ( mod n ) ( b )
RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )
式验证。具体操作时考虑到安全性和 m信息量较大等因素,一般是先
作 HASH 运算。
RSA 的安全性。
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理
论上的证明,因为没有证明破解RSA就一定需要作大数分解。假设存在
一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前,
RSA的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显
然的攻击方法。现在,人们已能分解140多个十进制位的大素数。因此,
模数n必须选大一些,因具体适用情况而定。
RSA的速度:
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论
是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据
加密。
RSA的选择密文攻击:
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装
(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信
息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保
留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征
--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有
两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体
任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不
对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction
对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不
同类型的攻击方法。
RSA的公共模数攻击。
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险
的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互
质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥
为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数
的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它
成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享
模数n。
RSA的小指数攻击。 有一种提高
RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度
有所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。
RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各
种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难
度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性
能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次
一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;
且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。
目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长
的密钥,其他实体使用1024比特的密钥。
D. des算法与rsa算法区别
1、性质不同:RSA公开密钥密码体制是一种使用不同的加密密钥与解密密钥。DES算法为密码体制中的对称密码体制,是1972年美国IBM公司研制的对称密码体制加密算法。
2、特点不同:密钥事实上是56位参与DES运算分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。RSA算法是由已知加密密钥推导出解密密钥在计算上是不可行的密码体制。
3、密钥数字不同:RSA允许选择公钥的大小。512位的密钥被视为不安全的;768位的密钥不用担心受到除了国家安全管理(NSA)外的其他事物的危害,1024位的密钥几乎是安全的。DES算法把64位的明文输入块变为64位的密文输出块,所使用的密钥也是64位。
(4)rsa私钥加密算法扩展阅读:
注意事项:
当改变明文的前8字节时,只会影响密文的前8字节,密文后8字节不变。因此,在应用3DES算法对线路传输数据加密过程中,若想保证密文的整体变化,要保证每块明文数据都是变化的。
使用者在设置密钥的时候应注意,密钥的前后8字节不要完全一样,否则就变为了DES算法,安全强度就会下降(用户可根据Cn=Ek3(Dk2(Ek1(Mn)))公式自行推导)。需要特别留意的是,密钥每字节中的最后一位是检验位,不会参与到加密运算中。
E. rsa加密和解密的理论依据是什么
以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关。但是,看了很多关于RSA加密算法原理的资料之后,我发现其实原理并不是我们想象中那么复杂,弄懂之后发现原来就只是这样而已..
学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。
必备数学知识
RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。
素数
素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。
互质数
网络上的解释是:公因数只有1的两个数,叫做互质数。;维基网络上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。
常见的互质数判断方法主要有以下几种:
两个不同的质数一定是互质数。例如,2与7、13与19。
一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。
相邻的两个自然数是互质数。如 15与 16。
相邻的两个奇数是互质数。如 49与 51。
较大数是质数的两个数是互质数。如97与88。
小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
2和任何奇数是互质数。例如2和87。
1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
辗转相除法。
指数运算
指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。
模运算
模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。
两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于b模m,或者,a与b关于模m同余。例如:26 ≡ 14 (mod 12)。
RSA加密算法
RSA加密算法简史
RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
公钥与密钥的产生
假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥:
随意选择两个大的质数p和q,p不等于q,计算N=pq。
根据欧拉函数,求得r = (p-1)(q-1)
选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)
将 p 和 q 的记录销毁。
(N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。
加密消息
假设Bob想给Alice送一个消息m,他知道Alice产生的N和e。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c:
ne ≡ c (mod N)
计算c并不复杂。Bob算出c后就可以将它传递给Alice。
解密消息
Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n:
cd ≡ n (mod N)
得到n后,她可以将原来的信息m重新复原。
解码的原理是:
cd ≡ n e·d(mod N)
以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由费马小定理可证明(因为p和q是质数)
n e·d ≡ n (mod p) 和 n e·d ≡ n (mod q)
这说明(因为p和q是不同的质数,所以p和q互质)
n e·d ≡ n (mod pq)
签名消息
RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。
RSA加密算法的安全性
当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。
1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。假如量子计算机有朝一日可以成为一种可行的技术的话,那么秀尔的算法可以淘汰RSA和相关的衍生算法。(即依赖于分解大整数困难性的加密算法)
另外,假如N的长度小于或等于256位,那么用一台个人电脑在几个小时内就可以分解它的因子了。1999年,数百台电脑合作分解了一个512位长的N。1997年后开发的系统,用户应使用1024位密钥,证书认证机构应用2048位或以上。
RSA加密算法的缺点
虽然RSA加密算法作为目前最优秀的公钥方案之一,在发表三十多年的时间里,经历了各种攻击的考验,逐渐为人们接受。但是,也不是说RSA没有任何缺点。由于没有从理论上证明破译RSA的难度与大数分解难度的等价性。所以,RSA的重大缺陷是无法从理论上把握它的保密性能如何。在实践上,RSA也有一些缺点:
产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密;
分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,。
F. 简述RSA体制密钥的生成及其加密、解密算法。
RSA体制密钥的生成:
1. 选择两个大素数,p 和q 。
2. 计算: n = p * q (p,q分别为两个互异的大素数,p,q 必须保密,一般要求p,q为安全素数,n的长度大于512bit ,这主要是因为RSA算法的安全性依赖于因子分解大数问题)。有欧拉函数 (n)=(p-1)(q-1)。
3. 然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。
4. 最后,利用Euclid 算法计算解密密钥d, 满足de≡1(mod φ(n))。其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。
加密、解密算法:
1. 加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s,其中 2^s <= n, s 尽可能的大。
2. 对应的密文是:ci ≡mi^e ( mod n ) ( a )
3. 解密时作如下计算:mi ≡ci^d ( mod n ) ( b ) RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )式验证。
G. RSA加密算法的精髓是什么
非对称加密。 密钥不是一个,而是一对,A和B。使用A加密的密文只能使用B来解密。使用B加密的密文只能使用A来解密。选择其中的一个作为公钥,另一个作为私钥,可以用于许多非对称加密应用场合。比如电子证书、电子指纹、电子签名、握手协议等传统对称加密手段无法实现的功能。
其核心是基于“大数的分解质因数非常困难”这个数学难题。使得在得知A的人无法推算出B,B也无法推算出A。
H. 请较为详细地描述rsa加密算法的全过程
RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1
这样最终得到三个数: n d e
设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。
在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。
rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。
rsa简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用rsa 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。
最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。
I. RSA加密与对称加密如何使用呢他们的混合应用又应该怎么用呢
RSA算法是第一个能同时用于加密和数字签名的算法。RSA算法能生成公私钥对。
假设A、B要通信,那么他们需要彼此知道对方的公钥,如果a向b发送信息,a先用自己的私钥对信息进行加密(即签名),然后用b的公钥进行加密。当
b收到消息时,先用自己的私钥进行解密,然后用a的公用进行解密(即验证签名),即可看到a发送的明文信息。
若是用对称密钥进行加密,则双方公用一个密钥,这个密钥需要绝对保密,不能让别人知道。a在向b发送信息前,先用这个密钥对信息进行加密,然后把加密的信息发送给b,之后再把密钥通过另一通道发送给b(要保证密钥传输的安全,不被其他人截获),b收到密文和密钥后,再用这个密钥进行解密,就可以得到原文。
若混合使用,假设还是a向b发送信息,a先用自己的私钥进行签名,然后再用双方公用的对称密钥(即会话密钥)进行加密,得到加密后的密文,然后用b的公钥对双方的会话密钥进行加密,得到加密的会话密钥,然后把加密的密文和加密的会话密钥一起发给b,b收到后先用自己的私钥对加密的会话密钥进行解密,得到会话密钥,再用会话密钥对加密的密文进行解密,得到签名的信息,然后用a的公钥对签名进行验证,便可得到原始信息。