fp_shutdown_active {
qcom,pins = <&gp 23>;
qcom,pin-func = <0>;
qcom,num-grp-pins = <1>;
label = "shutdown_gpio_active";
fp_shutdown_active: fp_shutdown_active {
drive-strength = <6>;
<span style="color:#ff0000;">output-high;</span>
bias-disable= <0>;
};
};
fp_shutdown_suspend {
qcom,pins = <&gp 23>;
qcom,pin-func = <0>;
qcom,num-grp-pins = <1>;
label = "shutdown_gpio_suspend";
fp_shutdown_suspend: fp_shutdown_suspend {
drive-strength = <2>;
<span style="color:#ff0000;">out
❷ 为什么高通处理器运行不了德州数据包,求高人解释!!!
处理器虽然都是ARM架构的,但是协处理器不一样,所以有些专门针对处理器优化编译的程序无法做到通用,嵌入式设备的硬件体系都比较乱,不像PC那么统一。安卓游戏APK通用,但数据包不一样,德州对应摩托罗拉,三星对应M9,高通对应HTC;你把数据包弄错了,就会出现白屏或者黑屏,高通CPU用摩托罗拉的数据包是黑屏,摩托罗拉(德州CPU)用高通的的数据包白屏,请大家分清数据包就没有问题,本人亲自测试,希望对大家有所帮助
❸ 高通mdm6600的核数,gpu主频
MDM6600并不是处理器的型号,而是基带芯片,所以也就没有核心数和主频的说法。
基带芯片是用来合成即将发射的基带信号,或对接收到的基带信号进行解码。具体地说,就是发射时,把音频信号编译成用来发射的基带码;接收时,把收到的基带码解译为音频信号。同时,也负责地址信息(手机号、网站地址)、文字信息(短讯文字、网站文字)、图片信息的编译。
高通MDM6600基带芯片支持GSM,CDMA,EVDO,WCDMA,HSPA等网络模式,最高14.4Mbps速度。
❹ 高通 ap_standard_oem test_device的区别是什么
ap_standard_oem带源码,可以自己修改代码编译镜像;
test_device是高通发布的编译好的镜像。
❺ 编译高通出现这个错误,哪位大神帮个忙 /bin/bash: jar: command not found
没有安装jdk,jar是jdk里包含的命令。下载安装jdk即可。注意,jre里没这个命令。
❻ 高通410可以烧自己编译的安卓系统么
vivoy51高配版、oppoA33、ivvi小骨pro、华为荣耀4x全网通版、ivvik1min、ivvi小i、ivvi小iplus,这些就是我能找到的还在开卖的高通410处理器手机,希望能帮到你。
❼ ubuntu12.04编译android源码要多久
这个关键是要看你的电脑配置情况,以及代码的附加情况,有的平台软件会附加很多东西上去,编译就比较慢了。
我们这边使用的是四核八线程的电脑,32GB内存,
原生代码 4.4 八线程编译40分钟左右,5.1,一个半小时左右,6.0的大约一个小时,以上是原生代码编译模拟器的时间。
高通代码6.0编译一般需要两个小时左右,mtk的也是两个小时左右,
❽ LABVIEW的软件 可以在通用的硬件上运行吗
可以啊。高通CPU可以跑Linux。LabVIEW有for Linux的版本。你用LabVIEW for Linux做一个程序,编译好后就可以在高通的Linux环境下运行。但是Windows版的LabVIEW是不可以编译出能在高通CPU上运行的程序的。
❾ arm64和xavier的不同
ARM64是ARM中64位体系结构,x64是x86系列中的64位体系。ARM属于精简指令集体系,汇编指令比较简单。x86属于复杂指令集体系,汇编指令较多。属于两种不同的体系。
从Win10操作系统入手可以做个对比,win10arm64跟win1064区别有下面三点:
一、应用不同
1、win10arm64只能运行ARM64应用,无法运行x64应用
2、win1064既可以运版行运行x64应用,也可以运行ARM64应用
二、编译不同
1、win10arm64允许开发者编译和反编译ARM64应用。
2、win1064不允许开发者编译和反编译x64应用,但可以编译和反编译ARM64应用。
三、电脑不同
1、win10arm64是针对使用高通ARM芯片的权电脑。
2、win1064是针对使用微软普通芯片的电脑。
ARM64是专门给新出的高通笔记本准备的,也可以安装在微软的Lumia950XL手机上;win1064是一般的X64电脑安装的,两者互不通用。
❿ 如何编译高通kernal设备树
DTS (device tree source)
.dts文件是一种ASCII 文本格式的Device
Tree描述,此文本格式非常人性化,适合人类的阅读习惯。基本上,在ARM
Linux在,一个。dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。由于一个SoC可能对应多个machine(一个SoC可以对应多个产品和电路板),势必这些。dts文件需包含许多共同的部分,Linux内核为了简化,把SoC公用的部分或者多个machine共同的部分一般提炼为。dtsi,类似于C语言的头文件。其他的machine对应的。dts就include这个。dtsi。譬如,对于VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用,
vexpress-v2p-ca9.dts有如下一行:
/include/
“vexpress-v2m.dtsi”
当然,和C语言的头文件类似,。dtsi也可以include其他的。dtsi,譬如几乎所有的ARM
SoC的。dtsi都引用了skeleton.dtsi。
.dts(或者其include的。dtsi)基本元素即为前文所述的结点和属性:
[plain] view
plainprint?
/ {
node1 {
a-string-property = “A string”;
a-string-list-property = “first string”, “second string”;
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = “Hello, world”;
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
/ {
node1 {
a-string-property = “A string”;
a-string-list-property = “first string”, “second string”;
a-byte-data-property = [0x01 0x23 0x34 0x56];
child-node1 {
first-child-property;
second-child-property = <1>;
a-string-property = “Hello, world”;
};
child-node2 {
};
};
node2 {
an-empty-property;
a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
child-node1 {
};
};
};
上述。dts文件并没有什么真实的用途,但它基本表征了一个Device
Tree源文件的结构:
1个root结点“/”;
root结点下面含一系列子结点,本例中为“node1” 和
“node2”;
结点“node1”下又含有一系列子结点,本例中为“child-node1” 和
“child-node2”;
各结点都有一系列属性。这些属性可能为空,如“
an-empty-property”;可能为字符串,如“a-string-property”;可能为字符串数组,如“a-string-list-property”;可能为Cells(由u32整数组成),如“second-child-property”,可能为二进制数,如“a-byte-data-property”。
下面以一个最简单的machine为例来看如何写一个。dts文件。假设此machine的配置如下:
1个双核ARM
Cortex-A9 32位处理器;
ARM的local bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和
0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10170000)、中断控制器(位于0x10140000)和一个external
bus桥;
External bus桥上又连接了SMC SMC91111
Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR
Flash(位于0x30000000);
External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim
DS1338实时钟(I2C地址为0x58)。
其对应的。dts文件为:
[plain] view
plainprint?
/ {
compatible = “acme,coyotes-revenge”;
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = “arm,cortex-a9”;
reg = <0>;
};
cpu@1 {
compatible = “arm,cortex-a9”;
reg = <1>;
};
};
serial@101f0000 {
compatible = “arm,pl011”;
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};
serial@101f2000 {
compatible = “arm,pl011”;
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};
gpio@101f3000 {
compatible = “arm,pl061”;
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};
intc: interrupt-controller@10140000 {
compatible = “arm,pl190”;
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};
spi@10115000 {
compatible = “arm,pl022”;
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};
external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ethernet@0,0 {
compatible = “smc,smc91c111”;
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};
i2c@1,0 {
compatible = “acme,a1234-i2c-bus”;
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = “maxim,ds1338”;
reg = <58>;
interrupts = < 7 3 >;
};
};
flash@2,0 {
compatible = “samsung,k8f1315ebm”, “cfi-flash”;
reg = <2 0 0x4000000>;
};
};
};
/ {
compatible = “acme,coyotes-revenge”;
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = “arm,cortex-a9”;
reg = <0>;
};
cpu@1 {
compatible = “arm,cortex-a9”;
reg = <1>;
};
};
serial@101f0000 {
compatible = “arm,pl011”;
reg = <0x101f0000 0x1000 >;
interrupts = < 1 0 >;
};
serial@101f2000 {
compatible = “arm,pl011”;
reg = <0x101f2000 0x1000 >;
interrupts = < 2 0 >;
};
gpio@101f3000 {
compatible = “arm,pl061”;
reg = <0x101f3000 0x1000
0x101f4000 0x0010>;
interrupts = < 3 0 >;
};
intc: interrupt-controller@10140000 {
compatible = “arm,pl190”;
reg = <0x10140000 0x1000 >;
interrupt-controller;
#interrupt-cells = <2>;
};
spi@10115000 {
compatible = “arm,pl022”;
reg = <0x10115000 0x1000 >;
interrupts = < 4 0 >;
};
external-bus {
#address-cells = <2>
#size-cells = <1>;
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ethernet@0,0 {
compatible = “smc,smc91c111”;
reg = <0 0 0x1000>;
interrupts = < 5 2 >;
};
i2c@1,0 {
compatible = “acme,a1234-i2c-bus”;
#address-cells = <1>;
#size-cells = <0>;
reg = <1 0 0x1000>;
interrupts = < 6 2 >;
rtc@58 {
compatible = “maxim,ds1338”;
reg = <58>;
interrupts = < 7 3 >;
};
};
flash@2,0 {
compatible = “samsung,k8f1315ebm”, “cfi-flash”;
reg = <2 0 0x4000000>;
};
};
};
上述。dts文件中,root结点“/”的compatible 属性compatible =
“acme,coyotes-revenge”;定义了系统的名称,它的组织形式为:<manufacturer>,<model>。Linux内核透过root结点“/”的compatible
属性即可判断它启动的是什么machine。
在。dts文件的每个设备,都有一个compatible
属性,compatible属性用户驱动和设备的绑定。compatible
属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式为“<manufacturer>,<model>”,其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更广的范围。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:
[plain] view
plainprint?
flash@0,00000000 {
compatible = “arm,vexpress-flash”, “cfi-flash”;
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
flash@0,00000000 {
compatible = “arm,vexpress-flash”, “cfi-flash”;
reg = <0 0x00000000 0x04000000>,
<1 0x00000000 0x04000000>;
bank-width = <4>;
};
compatible属性的第2个字符串“cfi-flash”明显比第1个字符串“arm,vexpress-flash”涵盖的范围更广。
再比如,Freescale
MPC8349 SoC含一个串口设备,它实现了国家半导体(National Semiconctor)的ns16550
寄存器接口。则MPC8349串口设备的compatible属性为compatible = “fsl,mpc8349-uart”,
“ns16550”。其中,fsl,mpc8349-uart指代了确切的设备, ns16550代表该设备与National Semiconctor
的16550
UART保持了寄存器兼容。
接下来root结点“/”的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible
属性为“arm,cortex-a9”。
注意cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:<name>[@<unit-address>],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如3com
Ethernet适配器对应的结点name宜为ethernet,而不是3com509。如果一个结点描述的设备有地址,则应该给出@unit-address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中给出。ePAPR标准给出了结点命名的规范。