⑴ 深度优先搜索和广度优先搜索的区别。 请讲的详细点,最好能用例子,谢谢啦
深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。在深度优先搜索中,对于最新发现的结点,如果它还有以此为起点而未搜过的边,就沿着边继续搜索下去。当结点v的所有边都已被探寻过,搜索将回溯到发现结点v有那条边的始结点。这一过程一直进行到已发现从源结点可达的所有结点为止。如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个过程反复进行直到所有结点都被发现为止。
深度优先搜索基本算法如下{递归算法}:
PROCEDURE dfs_try(i);
FOR i:=1 to maxr DO
BEGIN
IF 子结点 mr 符合条件 THEN
BEGIN
产生的子结点mr入栈;
IF 子结点mr是目标结点
THEN 输出
ELSE dfs_try(i+1);
栈顶元素出栈;
END;
END; 宽度优先搜索算法(又称广度优先搜索算法)是最简单的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijksta单源最短路径算法和Prim最小生成树算法都采用了与宽度优先搜索类似的思想。
宽度优先搜索的核心思想是:从初始结点开始,应用算符生成第一层结点,检查目标结点是否在这些后继结点中,若没有,再用产生式规则将所有第一层的结点逐一扩展,得到第二层结点,并逐一检查第二层结点中是否包含目标结点。若没有,再用算符逐一扩展第二层所有结点……,如此依次扩展,直到发现目标结点为止。
宽度优先搜索基本算法如下:
list[1]:=source; {加入初始结点,list为待扩展结点的表}
head:=0; {队首指针}
foot:=1; {队尾指针}
REPEAT
head:=head+1;
FOR x:=1 to 规则数 DO
BEGIN
根据规则产生新结点nw;
IF not_appear(nw,list) THEN {若新结点队列中不存在,则加到队尾}
BEGIN
foot:=foot+1;
list[foot]:=nw;
list[foot].father:=head;
IF list[foot]=目标结点 THEN 输出;
END;
END;
UNTIL head>foot; {队列为空表明再无结点可扩展}
望采纳
⑵ 图的矩阵深度和广度遍历算法
图的遍历是指从图中任一给定顶点出发,依次访问图中的其余顶点。如果给定的图是连通图,则从图中的任意一点出发,按照一个指定的顺序就可以访问到图中的所有顶点,且每个顶点只访问一次。这个过程称为图的遍历。
图的遍历比树的遍历复杂的多。树是一种特殊类型的图,即无圈(无回路)连通图。树中的任意两个顶点间都有唯一的路径相通。在一个顶点被访问过之后,不可能又沿着另外一条路径访问到已被访问过的结点。而图中的顶点可能有边与其他任意顶点相连
。因此在访问了某个顶点之后,可能沿着另一条边访问已被访问过的顶点。例如图(a)中的G1,在访问了V1,V2和V3之后,有可能沿着边(V3,V1)访问到V1。为了避免一顶点被多次访问,可以设立一个集合Visited,用来记录已被访问过的顶点。它的初值为空
集。一旦V1被访问过,即把V1加到集合Visited中。图的遍厉通常有两种:图的深度优先
搜索和图的广度优先搜索。
1)图的深度优先搜索
从图G=(V,E)的一个顶点V0出发,在访问了任意一个与V0相邻且未被访问过的顶点W1之后,再从W1出发,访问和W1相邻且未被访问过的顶点W2,然后再从W2出发进行如上所述访问,直到找到一个它相邻的结点,都被访问过的结点为止。然后退回到尚有相
邻结点未被访问过的顶点,再从该顶点出发,重复上述搜索过程,直到所有被访问过的顶点的邻接点都被访问过为止。图的这种遍历过程就称为图的深度优先搜索。例如从顶点V1出发对图3.3.5进行深度优先搜索,遍历的顺序为 V1,V2,V5,V10,V6,V7,V3,V12,V1
1,V8,V4,V9。(与邻接表中的邻接点排列顺序有关,即p->next.vertex=v2 or v3对遍历
顺序有影响 )
例25.(p194.c)图的深度优先搜索。从图G的顶点V0
发进行深度优先搜索,打印出各个顶点的遍历顺序。
解:图的深度优先搜索法为:
(1)首先访问V0并把V0加到集合visited中;
(2)找到与V0相邻的顶点W,若W未进入
visited中,则以深度优先方法从W开始搜索。
(3)重复过程(2)直到所有于V0相邻的顶点
都被访问过为止。
下面是对用邻接表表示的图G进行深度优先搜索的程序
int rear=0; /*Visit和rear都为全局变量*/
int visit[500];
depth_first_search(g,v0) /*从V0开始对图G进行深度
优先搜索*/
graphptr g[ ]; /*指针数组,为邻接表表头顶点指针
g[vi]...g[vn]*/
int v0; /*这里V0和W都是顶点标号,如V0=0或1*/
{ /*g[v0]是顶点V0的表头指针*/
int w;
graphptr p; /*链表的结点指针*/
visit [++rear]=v0;
printf("%d\n",v0);
p=g[v0];/*指定一个顶点,通过邻接表表头指针
,访问v0的邻接顶点*/
while (p!=NULL)
{
w=p->vertex ;/*这里W是与V0相邻的一个顶点*/
if (!visited(w))/*当V0的相邻结点,W未被访问时,从W开始遍厉*/
depth_first_search(g,w);
p=p->next;/*接着访问另一个相邻顶点*/
}
}
int visited(w) /*检查顶点w是否进入visited(w)*/
int w ;
{
int i;
for (i=1;i<=rear;i++)
if (visit [ i ] == w) return(1);/*W在visit[]中,说明被访问过*/
return(0); /*W不在visit[]中,说明未被访问过,返回0*/
}
2)图的广度优先搜索
从图G的一个顶点V0出发,依次访问V0的邻接点K1,K2...Kn。然后再顺序访问K1,K2...Kn的所有尚未被访问过的邻接点。如此重复,直到图中的顶点都被访问过为止。图的这种搜索称为图的广度优先搜索。例如:从V1出发按广度优先搜索方法遍历图3.3.5,顶
点的访问顺序为V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12。
图的广度优先搜索类似树的按层次遍历,需要有一个队列来存放还没
有来得及处理的顶点。图的广度优先搜索算法为:
(1)首先把V0放入队列;
(2)若队列为空则结束,否则取出队列的头V;
(3)访问V并把所有与V相邻且未被访问的顶点插入队列;
(4)重复(2)-(3)直到队列为空。
上述算法中所有已被访问过的顶点都放在队列中,因此只要检查某个顶点是否在队列中就可以判断出该顶点是否已被访问过。
广度搜索法的程序如下:
broad_first_search(g,v0) /*从V0开始对图g进行广度优先搜索*/
graphptr g[ ]; /*为邻接表,表头顶点指针*/
int v0;
{
int queue[500],front =1, tail=1,v;
graphptr p;
queue [tail]=v0; /*把V0插入队列queue*/
while (front <=tail)/*当队列不为空*/
{
v=queue[front++]; /*取出队列中的顶点*/
printf("%d\n",v); /*访问该顶点*/
p=g[v]; /*从顶点V的链表来考虑与V相邻的顶点*/
while (p!=NULL)
{
v=p->vertex; /*从第一个结点(即边)中找出相邻的顶点*/
if (!visited(queue,tail,v))/*判断顶点是否进入队列,如进入队列
说明已被访问或将要访问*/
queue[++tail]=v;/*如果该顶点未被访问过,将此相邻顶点插入队列*/
p=p-->next;/*再考虑该结点的下一个相邻顶点*/
}
}
}
visited (q,tail,v)/*判断顶点是否被访问过,访问过时,返回1,否则返回0*/
int q[ ],tail,v;/*进入队列的顶点,在front之前的顶点已被访问过打印输出,
在front和tail之间的顶点是即将要访问顶点*/
{
int i;
for(i=1;i<=tail;i++)/*扫描队列,确定v是否在队列中,在队列中返回1,否则返回0*
/
if (q[i]==v)return(1);/*队列中的顶点都认为已被访问过*/
return(0);
}
深度优先的非递归算法
/*设当前图(或图的某个连通分枝)的起始访问点为p*/
NodeType stackMain,stackSec
visit(p)
p->mark=true;
do
{
for(all v isTheConnectNode of (G,p))//将当前点的邻接点中的所有结点压入副栈中
if(v.marked==false)
statckSec.push(v)
//将副栈中的点依次弹出,压入主栈中,这与非递归算法中使用队列的意图类似
while(!stackSec.isEmpty())
stackMain.push(statckSec.pop());
do//找出下一个未访问的结点或者没找到,直到栈为空
{
if(!stackMain.isEmpty())
{
p=stackMain.pop();
}
}while(p.marked==true&&!stackMain.isEmpty())
if(p.marked==false)//访问未访问结点.
{
visit(p);
p.marked=true;
}
}while(!stackMain.isEmpty())
⑶ 图的广度优先遍历的递归算法(附详细解释)
广度优先遍历不是用队列的吗、、、、深度优先遍历才是用递归回溯啊
⑷ 图的广度优先 递归!!遍历 便利!
数据结构C++版书里不是有现场的么
⑸ c#)图的深度优先搜索和广度优先搜索算法的实现
#include "exam8-2.cpp"
void BFS(ALGraph *G,int v)
{
ArcNode *p;
int queue[MAXV],front=0,rear=0; //定义循环队列并初始化
int visited[MAXV]; //定义存放结点的访问标志的数组
int w,i;
for (i=0;i<G->n;i++) visited[i]=0; //访问标志数组初始化
printf("%2d",v); //输出被访问顶点的编号
visited[v]=1; //置已访问标记
rear=(rear+1)%MAXV;
queue[rear]=v; //v进队
while (front!=rear) //若队列不空时循环
{ front=(front+1)%MAXV;
w=queue[front]; //出队并赋给w
p=G->adjlist[w].firstarc; //找与顶点w邻接的第一个顶点
while (p!=NULL)
{ if (visited[p->adjvex]==0) //若当前邻接顶点未被访问
{ printf("%2d",p->adjvex); //访问相邻顶点
visited[p->adjvex]=1; //置该顶点已被访问的标志
rear=(rear+1)%MAXV; //该顶点进队
queue[rear]=p->adjvex;
}
p=p->nextarc; //找下一个邻接顶点
}
}
printf("\n");
}
void main()
{
int i,j;
MGraph g;
ALGraph *G;
int A[MAXV][5]={
{0,1,0,1,1},
{1,0,1,1,0},
{0,1,0,1,1},
{1,1,1,0,1},
{1,0,1,1,0}};
g.n=5;g.e=16;
for (i=0;i<g.n;i++)
for (j=0;j<g.n;j++)
g.edges[i][j]=A[i][j];
G=(ALGraph *)malloc(sizeof(ALGraph));
MatToList(g,G);
printf(" 邻接表:\n");DispAdj(G);
printf("广度优先序列:");BFS(G,2);printf("\n");
}
以上为广度优先搜索遍历
#include "exam8-2.cpp"
int visited[MAXV];
void DFS(ALGraph *G,int v)
{
ArcNode *p;
visited[v]=1; //置已访问标记
printf("%d ",v); //输出被访问顶点的编号
p=G->adjlist[v].firstarc; //p指向顶点v的第一条弧的弧头结点
while (p!=NULL)
{
if (visited[p->adjvex]==0) //若p->adjvex顶点未访问,递归访问它
DFS(G,p->adjvex);
p=p->nextarc; //p指向顶点v的下一条弧的弧头结点
}
}
void main()
{
int i,j;
MGraph g;
ALGraph *G;
int A[MAXV][5]={
{0,1,0,1,1},
{1,0,1,1,0},
{0,1,0,1,1},
{1,1,1,0,1},
{1,0,1,1,0}};
g.n=5;g.e=16;
for (i=0;i<g.n;i++)
for (j=0;j<g.n;j++)
g.edges[i][j]=A[i][j];
G=(ALGraph *)malloc(sizeof(ALGraph));
MatToList(g,G);
printf(" 邻接表:\n");DispAdj(G);
for (i=0;i<MAXV;i++)
visited[i]=0;
printf("深度优先序列:");DFS(G,2);printf("\n");
}
这是深度优先搜索遍历。
具体还需自己懂后创新
⑹ 无向有权的图的深度、广度优先遍历怎么做的啊,他的遍历序列怎么求呢
总结深度优先与广度优先的区别
1、区别
1) 二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
2) 深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:
先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
3)深度优先搜素算法:不全部保留结点,占用空间少;有回溯操作(即有入栈、出栈操作),运行速度慢。
广度优先搜索算法:保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。