A. 遗传算法求最小值点
用遗传算法求已知函数的最小值点的方法:
1、首先建立自定义函数,f(x)
ga_fun=@(x)11*sin(6*x)+7*cos(5*x);
2、其二用ga()函数求解最小值
[x,fval,exitflag] = ga(ga_fun,1,[],[],[],[],lb)
3、然后用ezplot()函数或plot()函数,绘出其函数f(x)的图形及最小值点
4、运行结果
B. 如何使用遗传算法或神经网络在MATLAB 中求二元函数最小值
你最好能提供具体的二元函数表达式,这样就可以有目的去帮你解决。一般遗传算法可以用ga()函数来求解。例如:
fun = @(x) (x(1) - 0.2)^2 + (x(2) - 1.7)^2
x = ga(fun,2)
执行结果
x = 0.20208 1.6766
C. matlab遗传算法求函数最小值问题!
如果你的函数是求maxf(x)的问题,要编程求最小值问题,那么你需要对这个函数取负值求最小值即可
举例来说:
求max(z)=ax+bx^2
等同于
求min(z)=-(ax+bx^2)
-----------------------------------------
我这里有一个使用matlab遗传算法工具箱的案例,你可以用来快速求解,如果你想自己编程实现遗传算法,可以加我QQ:34508855
核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0] 注意】matlab工具箱函数必须放在工作目录下 【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】 %编写目标函数 function[sol,eval]=fitness(sol,options) x=sol(1); eval=x+10*sin(5*x)+7*cos(4*x); %把上述函数存储为fitness.m文件并放在工作目录下 initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10 [x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',... [0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代 运算借过为:x = 7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2 【问题】在-5<=Xi<=5,i=1,2区间内,求解 f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】 %源函数的matlab代码 function [eval]=f(sol) numv=size(sol,2); x=sol(1:numv); eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282; %适应度函数的matlab代码 function [sol,eval]=fitness(sol,options) numv=size(sol,2)-1; x=sol(1:numv); eval=f(x); eval=-eval; %遗传算法的matlab代码 bounds=ones(2,1)*[-5 5]; [p,endPop,bestSols,trace]=ga(bounds,'fitness') 注:前两个文件存储为m文件并放在工作目录下,运行结果为 p = 0.0000 -0.0000 0.0055
D. 为什么我应用matlab自带的遗传算法工具箱求函数最小值,,每次运行结果都不一样
一样才怪!遗传算法是一种带有随机性的搜索型的求解全局最优解的方法。随机性就是在优化过程中变量的取值是随机变化的,但是这种变化是朝向全局最优的方向随机变化。但是当种群数量足够大,而且进化代数足够多的时候,最优解是具有稳定性的,虽然每次都不一样,但是最优解的变化一般不会很大。
myfun没有给出,这个是ga函数求解的部分设置,通过改变populationsize和generations可以达到获得稳定最优解的目的。变异概率和杂交概率也有一定的影响,在局部收敛的情况下可以增大变异概率等来避免局部最优。
E. 在matlab中如何用遗传算法求解函数和的最小值
用遗传算法求已知函数的最小值点的方法:1、首先建立自定义函数,f(x)ga_fun=@(x)11*sin(6*x)+7*cos(5*x);2、其二用ga()函数求解最小值[x,fval,exitflag]=ga(ga_fun,1,[],[],[],[],lb) 3、然后用ezplot()函数或plot()函数,绘出其函数f(x)的图形及最小值点4、运行结果5、执行代码
F. 利用遗传算法求函数的极小值和极大值的区别
用遗传算法求已知函数的最小值点的方法:1、首先建立自定义函数,f(x)ga_fun=@(x)11*sin(6*x)+7*cos(5*x);2、其二用ga()函数求解最小值[x,fval,exitflag]=ga(ga_fun,1,[],[],[],[],lb) 3、然后用ezplot()函数或plot()函数,绘出其函数f(x)的图形及最小值点4、运行结果5、执行代码
G. 遗传算法求一个目标函数的最小值,但不论迭代多少次,每次的结果都是一样的,这是为什么。
电气同行?
你的遗传算法相当于没有进化呢 把你问题的模型和代码贴出来或许能帮上忙……
H. matlab遗传算法求函数极小值!!!急!!
如果没有其他约束条件,直接用ga求解:
>>fi=inline('-2.113-0.1326*x(1)+10.49*x(2)+0.1505*x(1)^2-2.924*x(1)*x(2)+10.11*x(2)^2','x');
>>ga(fi,2,[],[],[],[],[018],[0.136])
Optimizationterminated:.TolFun.
ans=
0.100018.0000
即最小值在x=0.1、y=18处。
直接画出函数的图像来,可以验证结论的正确性:
ezmesh('-2.113-0.1326*x+10.49*y+0.1505*x^2-2.924*x*y+10.11*y^2',[00.1],[1836])
I. 如何用遗传算法求函数最小值
可以这样,用这两个限制条件的等式把8个未知量的目标函数降维成6个未知量的目标函数,把这个作为适应度函数,问题转变成6个未知量,限制条件0<=xi<=1,的遗传算法问题。这个目标函数是线性的应该很容易搜索出最小值。我最近在研究遗传算法,欢迎私信交流。
J. 怎么用遗传算法求一函数的极小值,编写matlab程序。
需要很多的子函数
%子程序:新物种交叉操作,函数名称存储为crossover.m
function scro=crossover(population,seln,pc);
BitLength=size(population,2);
pcc=IfCroIfMut(pc);%根据交叉概率决定是否进行交叉操作,1则是,0则否
if pcc==1
chb=round(rand*(BitLength-2))+1;%在[1,BitLength-1]范围内随机产生一个交叉位
scro(1,:)=[population(seln(1),1:chb) population(seln(2),chb+1:BitLength)]
scro(2,:)=[population(seln(2),1:chb) population(seln(1),chb+1:BitLength)]
else
scro(1,:)=population(seln(1),:);
scro(2,:)=population(seln(2),:);
end
%子程序:计算适应度函数,函数名称存储为fitnessfun.m
function [Fitvalue,cumsump]=fitnessfun(population);
global BitLength
global boundsbegin
global boundsend
popsize=size(population,1);%有popsize个个体
for i=1:popsize
x=transform2to10(population(i,:));%将二进制转换为十进制
%转化为[-2,2]区间的实数
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
Fitvalue(i)=targetfun(xx);%计算函数值,即适应度
end
%给适应度函数加上一个大小合理的数以便保证种群适应度值为正数
Fitvalue=Fitvalue'+203;
%计算选择概率
fsum=sum(Fitvalue);
Pperpopulation=Fitvalue/fsum;
%计算累计概率
cumsump(1)=Pperpopulation(1);
for i=2:popsize
cumsump(i)=cumsump(i-1)+Pperpopulation(i);
end
cumsump=cumsump';
%子程序:判断遗传运算是否需要进行交叉或变异,函数名称存储为IfCroIfMut.m
function pcc=IfCroIfMut(mutORcro);
test(1:100)=0;
l=round(100*mutORcro);
test(1:l)=1;
n=round(rand*99)+1;
pcc=test(n);
%子程序:新种群变异操作,函数名称存储为mutation.m
function snnew=mutation(snew,pmutation);
BitLength=size(snew,2);
snnew=snew;
pmm=IfCroIfMut(pmutation);%根据变异概率决定是否进行变异操作,1则是,0则否
if pmm==1
chb=round(rand*(BitLength-1))+1;%在[1,BitLength]范围内随机产生一个变异位
snnew(chb)=abs(snew(chb)-1);
end
%子程序:新种群选择操作,函数名称存储为selection.m
function seln=selection(population,cumsump);
%从种群中选择两个个体
for i=1:2
r=rand;%产生一个随机数
prand=cumsump-r;
j=1;
while prand(j)<0
j=j+1;
end
seln(i)=j;%选中个体的序号
end
%子程序:对于优化最大值或极大值函数问题,目标函数可以作为适应度函数
%函数名称存储为targetfun.m
function y=targetfun(x);%目标函数
%子程序:将二进制数转换为十进制数,函数名称存储为transform2to10.m
function x=transform2to10(Population);
BitLength=size(Population,2);
x=Population(BitLength);
for i=1:BitLength-1
x=x+Population(BitLength-i)*power(2,i);
end
k=[0 0.1 0.2 0.3 0.5 1];
for i=1:1:5
%主程序:用遗传算法求解targetfun.m中目标函数在区间[-2,2]的最大值
clc;
clear all;
close all;
global BitLength
global boundsbegin
global boundsend
bounds=[-2 2];%一维自变量的取值范围
precision=0.0001;%运算精度
boundsbegin=bounds(:,1);
boundsend=bounds(:,2);
%计算如果满足求解精度至少需要多长的染色体
BitLength=ceil(log2((boundsend-boundsbegin)'./precision));
popsize=50;%初始种群大小
Generationmax=12;%最大代数
pcrossover=0.90;%交配概率
pmutation=0.09;%变异概率
%产生初始种群
population=round(rand(popsize,BitLength));
%计算适应度值,返回Fitvalue和累计概率cumsump
[Fitvalue,cumsump]=fitnessfun(population);
Generation=1;
while Generation<Generationmax+1
for j=1:2:popsize
%选择操作
seln=selection(population,cumsump);
%交叉操作
scro=crossover(population,seln,pcrossover);
scnew(j,:)=scro(1,:);
scnew(j+1,:)=scro(2,:);
%变异操作
smnew(j,:)=mutation(scnew(j,:),pmutation);
smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);
end%产生了新种群
population=smnew;
%计算新种群的适应度
[Fitvalue,cumsump]=fitnessfun(population);
%记录当前代最好的适应度和平均适应度
[fmax,nmax]=max(Fitvalue);
fmean=mean(Fitvalue);
ymax(Generation)=fmax;
ymean(Generation)=fmean;
%记录当前代的最佳染色体个体
x=transform2to10(population(nmax,:));
%自变量取值范围是[-2 2],需要把经过遗传运算的最佳染色体整合到[-2 2]区间
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
xmax(Generation)=xx;
Generation=Generation+1;
end
Generation=Generation-1;
Bestpopuation=xx;
Besttargetfunvalue=targetfun(xx);
%绘制经过遗传运算后的适应度曲线。一般地,如果进化过程中种群的平均适应度与最大适
%应度在曲线上有相互趋同的形态,表示算法收敛进行得很顺利,没有出现震荡;在这种前
%提下,最大适应度个体连续若干代都没有发生进化表明种群已经成熟
figure(1);
hand1=plot(1:Generation,ymax);
set(hand1,'linestyle','-','linewidth',1.8,'marker','*','markersize',6)
hold on;
hand2=plot(1:Generation,ymean);
set(hand2,'color','r','linestyle','-','linewidth',1.8,'marker','h','markersize',6)
xlabel('进化代数');ylabel('(最大/平均适应度)');xlim([1 Generationmax]);
legend('最大适应度','平均适应度');
box off;hold off;
y=(x(i)-k(i))^2-10*sin(2*pi*(x(i)-k(i)))+10;
end