导航:首页 > 源码编译 > 交叉编译armmupdf

交叉编译armmupdf

发布时间:2022-08-30 17:33:18

㈠ 如何交叉编译python到ARM-linux平台

编译sqlite

先去 http://www.sqlite.org/download.html 下载最新的sqlite源代码,我这里用的是3.5.6版本的。

我推荐使用amalgamation版本的源代码,这个代码只有几个文件而已,编译起来方便,而且据说 编译器好的话,还可能编译出更高效的代码。 我下载的是

[plain]
view plain

http://www.sqlite.org/sqlite-amalgamation-3.5.6.tar.gz

先运行以下几步:

[plain]
view plain

tar zxf sqlite-amalgamation-3.5.6.tar.gz
cd sqlite-3.5.6
./configure --host=arm-linux --prefix=/usr/local/arm/3.3.2 --enable-shared --disable-readline --disable-dynamic-extensions

以上是把sqlite解压缩,然后做一些配置,这里,我希望sqlite到时候安装到/usr/local/arm/3.3.2里,要生成动态链接库,不要readline,不要sqlite的动态扩展。

然后编辑Makefile,把CFLAG和CXXFLAG中的-g去掉,我们不用debug sqlite。

接下来就可以编译和安装sqlite了:

[plain]
view plain

make
make install

这一步就完成了sqlite的编译和安装了。

编译python

先去http://www.python.org/download/下载最新版本的python源代码,我这里下载的是:

[plain]
view plain

http://www.python.org/ftp/python/2.5.1/Python-2.5.1.tar.bz2

先把python解压缩:

[plain]
view plain

tar jxf Python-2.5.1.tar.bz2
cd Python-2.5.1

编译pc版本的语法解析器

由于在编译python的时候,需要先编译一个叫pgen的程序出来,用于生成语法解析器,所以我们要先生成一个pc版本的pgen:

[plain]
view plain

mkdir build.pc
cd build.pc
../configure
make Parser/pgen

然后ls Parser一下,应该就能看到有pgen了。

修改configure

configure在检测编译器的printf是否支持%zd的时候,如果发现是在cross compile,就直接不干活了。这还了得?

把这一部分的检测代码去掉。这段代码起始于

[plain]
view plain

echo "$as_me:$LINENO: checking for %zd printf() format support" >&5
echo $ECHO_N "checking for %zd printf() format support... $ECHO_C" >&6
if test "$cross_compiling" = yes; then

结束于

[plain]
view plain

cat >>confdefs.h <<\_ACEOF
#define PY_FORMAT_SIZE_T "z"
_ACEOF

else
echo "$as_me: program exited with status $ac_status" >&5
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

( exit $ac_status )
echo "$as_me:$LINENO: result: no" >&5
echo "${ECHO_T}no" >&6
fi
rm -f core *.core gmon.out bb.out conftest$ac_exeext conftest.$ac_objext conftest.$ac_ext
fi

把这两段以及中间的内容都删除掉就可以了。

编译arm版本的python

有了语法解析器,就可以开始编译arm版本的python了。

[plain]
view plain

mkdir ../build.arm
cd ../build.arm
../configure --prefix=/home/leojay/test/arm-system-working/rootfs --disable-ipv6 --host=arm-linux --enable-shared

先创建一个用于编译的目录build.arm,再对python做一些配置,如安装目录,不要ipv6,使用arm-linux的编译器,生成动态链接库。

修改Makefile

之后就要对Makefile做一些修改,把

[plain]
view plain

OPT= -DNDEBUG -g -O3 -Wall -Wstrict-prototypes

一行中,去掉-g,我们不要debug python,-O3改为-O2,空间紧张O2就可以了。



[plain]
view plain

PGEN= Parser/pgen$(EXE)

一行的下面加上

[plain]
view plain

PGEN_HOST= ../build.pc/Parser/pgen$(EXE)

表明我们在HOST上运行的pgen

在要使用PGEN的地方改为PGEN_HOST:

[plain]
view plain

$(GRAMMAR_H) $(GRAMMAR_C): $(PGEN) $(GRAMMAR_INPUT)
-$(PGEN) $(GRAMMAR_INPUT) $(GRAMMAR_H) $(GRAMMAR_C)

改为:

[plain]
view plain

$(GRAMMAR_H) $(GRAMMAR_C): $(PGEN) $(GRAMMAR_INPUT)
-$(PGEN_HOST) $(GRAMMAR_INPUT) $(GRAMMAR_H) $(GRAMMAR_C)

修改所有使用新生成的python的地方。

所有如 ./$(BUILDPYTHON) 的地方,都改为python

如:

[plain]
view plain

platform: $(BUILDPYTHON)
$(RUNSHARED) ./$(BUILDPYTHON) -E -c 'import sys ; from distutils.util import get_platform ; print get_platform()+"-"+sys.version[0:3]' >platform

改为

[plain]
view plain

platform: $(BUILDPYTHON)
$(RUNSHARED) python -E -c 'import sys ; from distutils.util import get_platform ; print get_platform()+"-"+sys.version[0:3]' >platform

这种地方比较多,大家小心修改。

修改setup.py

setup.py负责编译python的各个扩展模块。但是,由于python完全没有考虑cross compile,所以要做一些修改。

PyBuildExt类:

函数的前两行是把/usr/local加到搜索目录中,我们的cross compiler一般不会直接安装在 /usr/local里面的,所以这两行去掉:

[plain]
view plain

lib_dirs, inc_dirs的设定中,把中括号里的那些都去掉。 以下所有模块都不要:
这个函数在编译了所有的extension后,会去load这些刚编译好的extension, 但我们在i686的电脑上显然不能load,所以要跳过这些操作。 在 build_ext.build_extension(self, ext)后面直接写一个return,不做load。
for d in ['/usr/local/arm/3.3.2/include']
for d in inc_dirs + sqlite_inc_paths:
ssl, openssl, bdb, dbm, termios, nsl, ncurses, bz2, linuxaudiodev, ossaudiodev, tkinter
add_dir_to_list(self.compiler.library_dirs, '/usr/local/lib')
add_dir_to_list(self.compiler.include_dirs, '/usr/local/include')
build_extension函数:
detect_moles函数:
cmath, ctypes, _testcapi, pwd, grp, spwd, mmap, audioop, imageop, rgbimg, readline,

[plain]
view plain

由于python本身的问题,现在ctypes还不能在除i386以外的机器上运行,所以ctypes也去掉 编译sqlite的地方:

[plain]
view plain

改为:

[plain]
view plain

因为我的sqlite3安装在这里,如果这里不改的话,setup.py会在我的电脑上找sqlite

main函数:
setup函数调用的时候,把要安装的scripts那一部分去掉

之后就可以make && make install了。

附上我修改后的 Makefile 和 setup.py 供大家参考

裁减python

python完全安装后,实在是很大,所以,要把一些肯定用不上的库去掉。 所以,再附上我的裁减脚本 cleanpy.sh

注意,由于我的python程序都运行在python -OO的参数下,所有的.py和.pyc都不需要, 只要有.pyo就可以了。所以,这个脚本会把所有的.py和.pyc都删除掉。

大家可以根据自己的需要做调整。

㈡ 如何交叉编译出arm

arm交叉编译就是在非arm平台编译arm平台运行的代码, 需要安装交叉编译工具, 比如x86平台上的arm gcc工具. 之后配置gcc为 该编译命令gcc-arm....编译结果下载到arm就可以运行了.

㈢ arm-linux-gcc交叉编译器的制作,以及版本选择问题。

,需要必须有足够动经验来支持。
另外,用 RH9 的都是高手,我想你的知识不需要来提问了吧?

1、在 PC 上编译 arm 的程序当然需要较差编译器,这个需要自己安装,或者着现成的交叉编译器环境,一般是一个特殊参数编译出来的 gcc + binutils + glibc + linux-header。这个每个人动环境不同,一般都需要自己编译一个,当然没有特殊需求,也可以找现成的。不过很难找,因为这套环境还要和你动系统搭配,不然环境不匹配,连这个环境都不能运行,那就更谈不上编译东西了。
有关自己编译搭建交叉编译环境,可以看看一个特殊的 Linux 发行版 LFS 的分支: CLFS 。

2、移植分很多意思,移植有可能就意味着这套源代码不能在目标系统上面编译,需要你根据相应的知识去修改源代码来让这套代码适应目标编译器的要求,比如源代码有 SSE4 的优化,这套程序在非 SSE4 CPU 上无法编译运行,但目标机器连 SSE1 都不支持。那么就需要移植。
或者移植仅仅是根据新的环境进行编译,不需要进行源代码修改,只需要进行一下编译就能运行的程序,也可以称为移植,就是从一个环境、架构 -》另一个环境、架构。都可以称为移植,但真正的移植意味着修改程序源代码来适应新环境。你说的这种移植是最简单的移植。

3、决定目标硬件环境 -》搭建目标编译器 -》制作目标环境(内核,基础软件库)-》进行应用移植(移植需要的软件、主应用程序)-》搭建系统文件系统 -》导入目标系统-》启动目标系统&应用。说起来很简单,因为这是完全没有问题的条件下。
至于超级终端。那是用来控制目标系统的。目标系统有可能不能插键盘鼠标显示器,这就需要一个远程网络链接来进行控制。以及通过远程链接来发送数据。这都需要终端的支持。

虚拟机下面进行开发,不能发挥你的计算机的性能。而且因为隔着 VMware 的软件模拟层,可能还不会很方便的让你链接目标设备。

至于用 socket ,我还没见到你的目标需要这个东西,因为所有的东西都是现成的源代码。不需要你从 0 开始写,当然你想自己写一个系统内核,或者服务器程序,或者全套的系统+应用,我绝对不拦你,但希望你写完这套东西,能把源代码发布出来。
ads 可以认为是一个支持环境,他本身不是一个系统的开发 SDK 。
-------------------------------------
ads 没用过,印象里他还有模拟器,调试器什么的程序。功能上要比 Linux 开发环境,WinCE 环境下面的东西更多更偏向于硬件方面,毕竟 ads 是 arm 出品的,不太可能偏向于软件部分设计。Linux 和 WinCE 都是系统而不是硬件工具。

你可以认为交叉编译器是一个应用程序,一个输出器。把源代码输出为 arm 的代码,这个应用程序的输出,是靠他自己的环境,而不是当前系统的环境的。
当前系统的各个软件的版本,不能影响交叉编译器输出的环境(理论上,现实有的时候总是从别的地方给你打击……),交叉编译器一般至少有 gcc 、binutils 、glibc 库、linux kernel 头文件。

在软件需求上。
头文件谁都不依赖,glibc 只需要内核头文件,其他程序全都依赖于 glibc 。也就是所有程序都不依赖内核,仅仅是依赖于内核头文件。

gcc 和 binutils 是把程序源代码根据上面各个环节的需提供的功能来输出为上面环节里面的二进制程序。依赖你当前环境的,只有 gcc 和 binutils 两个程序的执行、控制环节。只有他们两个依赖的,而不是你的交叉编译后的程序。

至于编译器版本的选择,新版本功能更好,旧版本兼容更好。
这个要看你的实际需要了。应用程序源代码也调编译器的,同时也依赖于软件库的功能。

arm 开发建议稳定、兼容优先。当然也可以尝试最新的编译环境,来获取更好的优化(前提是还有什么代码优化的话)。
另外,团IDC网上有许多产品团购,便宜有口碑

㈣ 如何在arm板子上安装交叉编译工具链

所谓的搭建交叉编译环境,即安装、配置交叉编译工具链。在该环境下编译出嵌入式Linux系统所需的操作系统、应用程序等,然后再上传到目标机上。 交叉编译工具链是为了编译、链接、处理和调试跨平台体系结构的程序代码。对于交叉开发的工具链来说...

㈤ 关于Linux上的arm-linux交叉编译工具链的问题:但是arm也有很多种啊! 这个工具是对所有的ARM都支持吗

由于交叉编译器中每个组件都有各自的版本,所以可以使用不同版本的组件来制作交叉编译器。但是,组件之间会因版本不匹配的问题而产生错误。为了避免这种麻烦,建议直接使用制作好的arm-linux交叉编译器。你优化arm9,应该是想升级内核吧,升级内核有相应的命令的。

㈥ 交叉编译器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的区别

自己之前一直没搞清楚这两个交叉编译器到底有什么问题,特意google一番,总结如下,希望能帮到道上和我有同样困惑的兄弟…..
一. 什么是ABI和EABI
1) ABI: 二进制应用程序接口(Application Binary Interface (ABI) for the ARM Architecture)
在计算机中,应用二进制接口描述了应用程序(或者其他类型)和操作系统之间或其他应用程序的低级接口.
ABI涵盖了各种细节,如:
数据类型的大小、布局和对齐;
调用约定(控制着函数的参数如何传送以及如何接受返回值),例如,是所有的参数都通过栈传递,还是部分参数通过寄存器传递;哪个寄存器用于哪个函数参数;通过栈传递的第一个函数参数是最先push到栈上还是最后;
系统调用的编码和一个应用如何向操作系统进行系统调用;
以及在一个完整的操作系统ABI中,目标文件的二进制格式、程序库等等。
一个完整的ABI,像Intel二进制兼容标准 (iBCS) ,允许支持它的操作系统上的程序不经修改在其他支持此ABI的操作体统上运行。
ABI不同于应用程序接口(API),API定义了源代码和库之间的接口,因此同样的代码可以在支持这个API的任何系统中编译,ABI允许编译好的目标代码在使用兼容ABI的系统中无需改动就能运行。
2) EABI: 嵌入式ABI
嵌入式应用二进制接口指定了文件格式、数据类型、寄存器使用、堆积组织优化和在一个嵌入式软件中的参数的标准约定。
开发者使用自己的汇编语言也可以使用EABI作为与兼容的编译器生成的汇编语言的接口。
支持EABI的编译器创建的目标文件可以和使用类似编译器产生的代码兼容,这样允许开发者链接一个由不同编译器产生的库。
EABI与关于通用计算机的ABI的主要区别是应用程序代码中允许使用特权指令,不需要动态链接(有时是禁止的),和更紧凑的堆栈帧组织用来节省内存。广泛使用EABI的有Power PC和ARM.
二. gnueabi相关的两个交叉编译器: gnueabi和gnueabihf
在debian源里这两个交叉编译器的定义如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可见这两个交叉编译器适用于armel和armhf两个不同的架构, armel和armhf这两种架构在对待浮点运算采取了不同的策略(有fpu的arm才能支持这两种浮点运算策略)
其实这两个交叉编译器只不过是gcc的选项-mfloat-abi的默认值不同. gcc的选项-mfloat-abi有三种值soft,softfp,hard(其中后两者都要求arm里有fpu浮点运算单元,soft与后两者是兼容的,但softfp和hard两种模式互不兼容):
soft : 不用fpu进行浮点计算,即使有fpu浮点运算单元也不用,而是使用软件模式。
softfp : armel架构(对应的编译器为gcc-arm-linux-gnueabi)采用的默认值,用fpu计算,但是传参数用普通寄存器传,这样中断的时候,只需要保存普通寄存器,中断负荷小,但是参数需要转换成浮点的再计算。
hard : armhf架构(对应的编译器gcc-arm-linux-gnueabihf)采用的默认值,用fpu计算,传参数也用fpu中的浮点寄存器传,省去了转换, 性能最好,但是中断负荷高。
把以下测试使用的c文件内容保存成mfloat.c:
#include <stdio.h>
int main(void)
{
double a,b,c;
a = 23.543;
b = 323.234;
c = b/a;
printf(“the 13/2 = %f\n”, c);
printf(“hello world !\n”);
return 0;
}
1)使用arm-linux-gnueabihf-gcc编译,使用“-v”选项以获取更详细的信息:
# arm-linux-gnueabihf-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=’-v’ ‘-march=armv7-a’ ‘-mfloat-abi=hard’ ‘-mfpu=vfpv3-d16′ ‘-mthumb’
-mfloat-abi=hard,可看出使用hard硬件浮点模式。
2)使用arm-linux-gnueabi-gcc编译:
# arm-linux-gnueabi-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=’-v’ ‘-march=armv7-a’ ‘-mfloat-abi=softfp’ ‘-mfpu=vfpv3-d16′ ‘-mthumb’
-mfloat-abi=softfp,可看出使用softfp模式。
三. 拓展阅读
下文阐述了ARM代码编译时的软浮点(soft-float)和硬浮点(hard-float)的编译以及链接实现时的不同。从VFP浮点单元的引入到软浮点(soft-float)和硬浮点(hard-float)的概念
VFP (vector floating-point)
从ARMv5开始,就有可选的 Vector Floating Point (VFP) 模块,当然最新的如 Cortex-A8, Cortex-A9 和 Cortex-A5 可以配置成不带VFP的模式供芯片厂商选择。
VFP经过若干年的发展,有VFPv2 (一些 ARM9 / ARM11)、 VFPv3-D16(只使用16个浮点寄存器,默认为32个)和VFPv3+NEON (如大多数的Cortex-A8芯片) 。对于包含NEON的ARM芯片,NEON一般和VFP公用寄存器。
硬浮点Hard-float
编译器将代码直接编译成发射给硬件浮点协处理器(浮点运算单元FPU)去执行。FPU通常有一套额外的寄存器来完成浮点参数传递和运算。
使用实际的硬件浮点运算单元FPU当然会带来性能的提升。因为往往一个浮点的函数调用需要几个或者几十个时钟周期。
软浮点 Soft-float
编译器把浮点运算转换成浮点运算的函数调用和库函数调用,没有FPU的指令调用,也没有浮点寄存器的参数传递。浮点参数的传递也是通过ARM寄存器或者堆栈完成。
现在的Linux系统默认编译选择使用hard-float,即使系统没有任何浮点处理器单元,这就会产生非法指令和异常。因而一般的系统镜像都采用软浮点以兼容没有VFP的处理器。
armel ABI和armhf ABI
在armel中,关于浮点数计算的约定有三种。以gcc为例,对应的-mfloat-abi参数值有三个:soft,softfp,hard。
soft是指所有浮点运算全部在软件层实现,效率当然不高,会存在不必要的浮点到整数、整数到浮点的转换,只适合于早期没有浮点计算单元的ARM处理器;
softfp是目前armel的默认设置,它将浮点计算交给FPU处理,但函数参数的传递使用通用的整型寄存器而不是FPU寄存器;
hard则使用FPU浮点寄存器将函数参数传递给FPU处理。
需要注意的是,在兼容性上,soft与后两者是兼容的,但softfp和hard两种模式不兼容。
默认情况下,armel使用softfp,因此将hard模式的armel单独作为一个abi,称之为armhf。
而使用hard模式,在每次浮点相关函数调用时,平均能节省20个CPU周期。对ARM这样每个周期都很重要的体系结构来说,这样的提升无疑是巨大的。
在完全不改变源码和配置的情况下,在一些应用程序上,使用armhf能得到20%——25%的性能提升。对一些严重依赖于浮点运算的程序,更是可以达到300%的性能提升。
Soft-float和hard-float的编译选项
在CodeSourcery gcc的编译参数上,使用-mfloat-abi=name来指定浮点运算处理方式。-mfpu=name来指定浮点协处理的类型。
可选类型如fpa,fpe2,fpe3,maverick,vfp,vfpv3,vfpv3-fp16,vfpv3-d16,vfpv3-d16-fp16,vfpv3xd,vfpv3xd-fp16,neon,neon-fp16,vfpv4,vfpv4-d16,fpv4-sp-d16,neon-vfpv4等。
使用-mfloat-abi=hard (等价于-mhard-float) -mfpu=vfp来选择编译成硬浮点。使用-mfloat-abi=softfp就能兼容带VFP的硬件以及soft-float的软件实现,运行时的连接器ld.so会在执行浮点运算时对于运算单元的选择,
是直接的硬件调用还是库函数调用,是执行/lib还是/lib/vfp下的libm。-mfloat-abi=soft (等价于-msoft-float)直接调用软浮点实现库。
在ARM RVCT工具链下,定义fpu模式:
–fpu softvfp
–fpu softvfp+vfpv2
–fpu softvfp+vfpv3
–fpu softvfp+vfpv_fp16
–fpu softvfp+vfpv_d16
–fpu softvfp+vfpv_d16_fp16.
定义浮点运算类型
–fpmode ieee_full : 所有单精度float和双精度double的精度都要和IEEE标准一致,具体的模式可以在运行时动态指定;
–fpmode ieee_fixed : 舍入到最接近的实现的IEEE标准,不带不精确的异常;
–fpmode ieee_no_fenv :舍入到最接近的实现的IEEE标准,不带异常;
–fpmode std :非规格数flush到0、舍入到最接近的实现的IEEE标准,不带异常;
–fpmode fast : 更积极的优化,可能会有一点精度损失。

㈦ 如何建立Linux下的ARM交叉编译环境

首先安装交叉编译器,网络“arm-linux-gcc”就可以一个编译器压缩包。
把压缩包放到linux系统中,解压,这样就算安装好了交叉编译器。
设置编译器环境变量,具体方式网络。如打开 /etc/bash.bashrc,添加刚才安装的编译器路径 export PATH=/home/。。。/4.4.3/bin:$PATH。这样是为了方便使用,用arm-linux-gcc即可,不然既要带全路径/home//bin/arm-linux-gcc,这样不方便使用。
编译c文件。和gcc编译相似,把gcc用arm-linu-gcc代替就是了。编译出来的就可以放到arm上运行了。</ol>

㈧ 请教:ARM交叉编译中不能编译二进制工具

用交叉编译器在x86上编译通过了,那么在arm上你得要共享,然后再运行可执行文件,试试可不可以。

㈨ 交叉编译器 arm-linux-gnueabi 和 arm-linux-gnuea

一. 什么是ABI和EABI
1) ABI: 二进制应用程序接口(Application Binary Interface (ABI) for the ARM Architecture)
在计算机中,应用二进制接口描述了应用程序(或者其他类型)和操作系统之间或其他应用程序的低级接口.
ABI涵盖了各种细节,如:
数据类型的大小、布局和对齐;
调用约定(控制着函数的参数如何传送以及如何接受返回值),例如,是所有的参数都通过栈传递,还是部分参数通过寄存器传递;哪个寄存器用于哪个函数参数;通过栈传递的第一个函数参数是最先push到栈上还是最后;
系统调用的编码和一个应用如何向操作系统进行系统调用;
以及在一个完整的操作系统ABI中,目标文件的二进制格式、程序库等等。
一个完整的ABI,像Intel二进制兼容标准 (iBCS) ,允许支持它的操作系统上的程序不经修改在其他支持此ABI的操作体统上运行。
ABI不同于应用程序接口(API),API定义了源代码和库之间的接口,因此同样的代码可以在支持这个API的任何系统中编译,ABI允许编译好的目标代码在使用兼容ABI的系统中无需改动就能运行。
2) EABI: 嵌入式ABI
嵌入式应用二进制接口指定了文件格式、数据类型、寄存器使用、堆积组织优化和在一个嵌入式软件中的参数的标准约定。
开发者使用自己的汇编语言也可以使用EABI作为与兼容的编译器生成的汇编语言的接口。
支持EABI的编译器创建的目标文件可以和使用类似编译器产生的代码兼容,这样允许开发者链接一个由不同编译器产生的库。
EABI与关于通用计算机的ABI的主要区别是应用程序代码中允许使用特权指令,不需要动态链接(有时是禁止的),和更紧凑的堆栈帧组织用来节省内存。广泛使用EABI的有Power PC和ARM.
二. gnueabi相关的两个交叉编译器: gnueabi和gnueabihf
在debian源里这两个交叉编译器的定义如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可见这两个交叉编译器适用于armel和armhf两个不同的架构, armel和armhf这两种架构在对待浮点运算采取了不同的策略(有fpu的arm才能支持这两种浮点运算策略)
其实这两个交叉编译器只不过是gcc的选项-mfloat-abi的默认值不同. gcc的选项-mfloat-abi有三种值soft,softfp,hard(其中后两者都要求arm里有fpu浮点运算单元,soft与后两者是兼容的,但softfp和hard两种模式互不兼容):
soft : 不用fpu进行浮点计算,即使有fpu浮点运算单元也不用,而是使用软件模式。
softfp : armel架构(对应的编译器为gcc-arm-linux-gnueabi)采用的默认值,用fpu计算,但是传参数用普通寄存器传,这样中断的时候,只需要保存普通寄存器,中断负荷小,但是参数需要转换成浮点的再计算。
hard : armhf架构(对应的编译器gcc-arm-linux-gnueabihf)采用的默认值,用fpu计算,传参数也用fpu中的浮点寄存器传,省去了转换, 性能最好,但是中断负荷高。

㈩ linux arm 交叉编译怎么使用

交叉编译器通常以 arm-none-linux-gnueabi.tar.bz2 这样的名称发布(不同厂家的不同开发平台,交叉编译工具链的实际名称可能有所差别,请以实际为准),解压命令: vmuser@Linux-host: ~$ tar xjvf arm-none-linux-gnueabi.tar.bz2 如果希望解压...

阅读全文

与交叉编译armmupdf相关的资料

热点内容
砖墙内加密钢筋 浏览:990
乡关何处pdf 浏览:82
小猪领赞小程序源码 浏览:334
python曲线如何原路返回 浏览:428
pdf快速看图破解版 浏览:292
怎么找一个软件里面的源码 浏览:772
python设定安装源 浏览:831
boss直聘程序员面试方式 浏览:484
cc服务器怎么处理 浏览:455
福万通app哪里查到期 浏览:344
苹果换手机如何还原app 浏览:560
云服务器测试技巧 浏览:546
网盘里面的文件如何解压 浏览:463
linux查看应用的端口 浏览:97
拉伸训练pdf 浏览:92
如何拨号到中央服务器 浏览:648
中国天才少年程序员 浏览:352
编程思想pdf 浏览:282
加密欧美航线 浏览:48
svn怎么看服务器的地址 浏览:187