导航:首页 > 源码编译 > 回归方程的算法

回归方程的算法

发布时间:2022-09-02 12:29:06

㈠ 求回归方程的最小二乘法,是怎么计算的

计算方法:

y = Ax + B:a = sigma[(yi-y均值)*(xi-x均值)] / sigma[(xi-x均值)的平方];b = y均值 - a*x均值。

知识拓展

最小二乘法求回归直线方程的推导过程

这里的是为了区分Y的实际值y(这里的实际值就是统计数据的真实值,我们称之为观察值),当x取值(i=1,2,3……n)时,Y的观察值为,近似值为(或者说对应的纵坐标是)。
其中式叫做Y对x的回归直线方程,b叫做回归系数。要想确定回归直线方程,我们只需确定a与回归系数b即可。
设x,Y的一组观察值为:
i = 1,2,3……n
其回归直线方程为:
当x取值(i=1,2,3……n)时,Y的观察值为,差刻画了实际观察值与回归直线上相应点纵坐标之间的偏离程度,见下图:

㈡ 线性回归方程公式

线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。

一、概念

线性回归方程中变量的相关关系最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。因此,可以认为关于的回归函数的类型为线性函数。

分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。

先求x,y的平均值X,Y

再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)

后把x,y的平均数X,Y代入a=Y-bX

求出a并代入总的公式y=bx+a得到线性回归方程

(X为xi的平均数,Y为yi的平均数)

三、应用

线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。

线性回归有很多实际用途。分为以下两大类:

如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。

给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。


在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。

不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布。

㈢ 回归方程怎么求 求解步骤是什么

先求 x、y 的平均数 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2,

然后求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 ,

接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,

现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,

而 a=y_-bx_=7/2-0.7*9/2=0.35 ,

所以回归直线方程为 y=bx+a=0.7x+0.35 。

(3)回归方程的算法扩展阅读:

回归方程运算案例:

若在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。

因为模型中有残差,并且残差无法消除,所以就不能用二点确定一条直线的方法来得到方程,要保证几乎所有的实测值聚集在一条回归直线上,就需要它们的纵向距离的平方和到那个最好的拟合直线距离最小。

记此直线方程为(如右所示,记为①式)这里在y的上方加记号“^”,是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是①式叫做Y对x的

回归直线方程,相应的直线叫做回归直线,b叫做回归系数。要确定回归直线方程①,只要确定a与回归系数b。

回归方程的有关量:e.随机变量 ^b.斜率 ^a.截距 —x.x的数学期望 —y.y的数学期望 R.回归方程的精确度。

回归直线的求法

最小二乘法:

总离差不能用n个离差之和

来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:

㈣ 线性回归方程怎么计算的

线性回归方程变量的相关关系中最为简单的是线性相关关系,设随机变量*与变量之间存在线性相关关系,则由试验数据得到的点(,)将散布在某一直线周围,因此,可以认为关于的回归函数的类型为线性函数,即,下面用最小二乘法估计参数、b,设服从正态分布,分别求对、b的偏导数,并令它们等于零,得方程组
解得
其中

且为观测值的样本方差.
线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差.
利用公式求解:b=
a=y(平均数)-b*(平均数)

㈤ 线性回归方程公式详解是什么

线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。详解如下。

1、第一:用所给样本求出两个相关变量的(算术)平均值。

2、第二:分别计算分子和分母:(两个公式任选其一)分子。

3、第三:计算b:b=分子/分母。

4、用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。

5、先求x,y的平均值X,Y。

6、再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。

7、后把x,y的平均数X,Y代入a=Y-bX。

8、求出a并代入总的公式y=bx+a得到线性回归方程。

9、(X为xi的平均数,Y为yi的平均数)。

㈥ 线性回归方程公式是什么

线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。


线性回归方程公式求法:


第一:用所给样本求出两个相关变量的(算术)平均值:


x_=(x1+x2+x3+...+xn)/n


y_=(y1+y2+y3+...+yn)/n


第二:分别计算分子和分母:(两个公式任选其一)


分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_


分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2


第三:计算b:b=分子/分母


用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为


其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。


先求x,y的平均值X,Y


再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)


后把x,y的平均数X,Y代入a=Y-bX


求出a并代入总的公式y=bx+a得到线性回归方程


(X为xi的平均数,Y为yi的平均数)



应用


线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。


线性回归有很多实际用途。分为以下两大类:


如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。


给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。


以上内容参考网络-线性回归方程

㈦ 回归方程公式

回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。

离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi。
总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。
要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。

㈧ 回归方程公式详细步骤是什么

先求 x、y 的平均数 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2,

然后求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 ,

接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,

现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,

而 a=y_-bx_=7/2-0.7*9/2=0.35 ,

所以回归直线方程为 y=bx+a=0.7x+0.35 。

(8)回归方程的算法扩展阅读:

回归直线的求法

最小二乘法:

总离差不能用n个离差之和。

来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:

由于绝对值使得计算不变,在实际应用中人们更喜欢用:Q=(y1-bx1-a)²+(y2-bx2-a)²+······+(yn-bxn-a)²,这样,问题就归结于:当a,b取什么值时Q最小,即到点直线y=bx+a的“整体距离”最小。

㈨ 回归直线方程的计算方法

要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,

(9)回归方程的算法扩展阅读

回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。

离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.

总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。

阅读全文

与回归方程的算法相关的资料

热点内容
魔爪mx稳定器app去哪里下载 浏览:469
excel如何批量处理电话号码加密 浏览:324
ark命令 浏览:39
seal是不是对称密钥算法 浏览:29
免费学习的app在哪里下载 浏览:177
rfid与单片机 浏览:589
5s相当于安卓什么手机 浏览:689
哈佛商学院pdf 浏览:978
app的ip哪里买 浏览:909
移动天文台app在哪里下载 浏览:923
phpjsonencode乱码 浏览:587
t3的服务器名是什么几把 浏览:69
高中算法语句 浏览:549
安卓充电接头坏如何直接线 浏览:2
mcu编译成库 浏览:296
python官网访问不了了 浏览:98
库卡逻辑编程 浏览:919
加密币驱动 浏览:982
怎么解压后的文件夹没有激活工具 浏览:809
java自带加密 浏览:619