导航:首页 > 源码编译 > 算法顺推法填表

算法顺推法填表

发布时间:2022-09-04 00:22:34

⑴ 数列递推算法的原理

什么是递推
所谓递推,是指从已知的初始条件出发,依据某种递推关系,逐次推出所要求的各中间结果及最后结果。其中初始条件或是问题本身已经给定,或是通过对问题的分析与化简后确定。
从已知条件出发逐步推到问题结果,此种方法叫顺推。
从问题出发逐步推到已知条件,此种方法叫逆推。
无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。
递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。
递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。

递推的特点
可用递推算法求解的题目一般有以下两个特点:
1、问题可以划分成多个状态;
2、除初始状态外,其它各个状态都可以用固定的递推关系式来表示。
在我们实际解题中,题目不会直接给出递推关系式,而是需要通过分析各种状态,找出递推关系式。

【例1】数字三角形。
如下所示为一个数字三角形。请编一个程序计算从顶到底的某处的一条路径,使该路径所经过的数字总和最大。只要求输出总和。

1、 一步可沿左斜线向下或右斜线向下走;
2、 三角形行数小于等于100;
3、 三角形中的数字为0,1,…,99;
测试数据通过键盘逐行输入,如上例数据应以如下所示格式输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
【算法分析】
此题解法有多种,从递推的思想出发,设想,当从顶层沿某条路径走到第i层向第i+1层前进时,我们的选择一定是沿其下两条可行路径中最大数字的方向前进,为此,我们可以采用倒推的手法,设a[i][j]存放从i,j 出发到达n层的最大值,则a[i][j]=max{a[i][j]+a[i+1][j],a[i][j]+a[i+1][j+1]},a[1][1] 即为所求的数字总和的最大值。

//【参考程序】
#include<iostream>
using namespace std;
int main(){
int n,i,j,a[101][101];
cin>>n;
for (i=1;i<=n;i++)
for (j=1;j<=i;j++)
cin>>a[i][j]; //输入数字三角形的值
for (i=n-1;i>=1;i--)
for (j=1;j<=i;j++)
{
if (a[i+1][j]>=a[i+1][j+1]) a[i][j]+=a[i+1][j]; //路径选择
else a[i][j]+=a[i+1][j+1];
}
cout<<a[1][1]<<endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
思考
如果要输出最大和的路径该怎么处理呢?

【例2】 骨牌问题
有2 × n的一个长方形方格,用一个1 × 2的骨牌铺满方格。
编写一个程序,试对给出的任意一个n(n>0), 输出铺法总数。
【算法分析】
(1)面对上述问题,如果思考方法不恰当,要想获得问题的解答是相当困难的。可以用递推方法归纳出问题解的一般规律。
(2)当n=1时,只能是一种铺法,铺法总数有示为x1=1。
(3)当n=2时:骨牌可以两个并列竖排,也可以并列横排,再无其他方法,如下左图所示,因此,铺法总数表示为x2=2;

(4)当n=3时:骨牌可以全部竖排,也可以认为在方格中已经有一个竖排骨牌,则需要在方格中排列两个横排骨牌(无重复方法),若已经在方格中排列两个横排骨牌,则必须在方格中排列一个竖排骨牌。如上右图,再无其他排列方法,因此铺法总数表示为x3=3。
由此可以看出,当n=3时的排列骨牌的方法数是n=1和n=2排列方法数的和

⑵ 递推算法是怎么回事

递推定义
递推算法是一种简单的算法,即通过已知条件,利用特定关系得出中间推论,直至得到结果的算法。

递推算法分为顺推和逆推两种。

顺推法
所谓顺推法是从已知条件出发,逐步推算出要解决的问题的方法叫顺推。

如斐波拉契数列,设它的函数为f(n),已知f(1)=1,f(2)=1;f(n)=f(n-2)+f(n-1)(n>=3,n∈N)。则我们通过顺推可以知道,f(3)=f(1)+f(2)=2,f(4)=f(2)+f(3)=3……直至我们要求的解。

逆推法
所谓逆推法从已知问题的结果出发,用迭代表达式逐步推算出问题的开始的条件,即顺推法的逆过程,称为逆推。

递推与递归的比较
相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值.

比如阶乘函数:f(n)=n*f(n-1)

在f(3)的运算过程中,递归的数据流动过程如下:

f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6}

而递推如下:

f(0)-->f(1)-->f(2)-->f(3)

由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推.但是递归作为比较基础的算法,它的作用不能忽视.所以,在把握这两种算法的时候应该特别注意.

⑶ 请教元旦干支、年干支推算法

1,年元旦干支的求法是:以本年元旦干支为基础,求下一年的元旦干支,本年若为平年,则本年元旦干支加五,即得下一年的元旦干支;本年若为闰年,则本年元旦干支加六,即得下一年的年元旦干支。


⑷ 什么是算法,都什么,举个例子,谢谢

根据我个人的理解:
算法就是解决问题的具体的方法和步骤,所以具有以下性质:

1、有穷性: 一个算法必须保证执行有限步之后结束(如果步骤无限,问题就无法解决)
2、确切性:步骤必须明确,说清楚做什么。
3、输入:即解决问题前我们所掌握的条件。
4、输出:输出即我们需要得到的答案。
5、可行性:逻辑不能错误,步骤必须有限,必须得到结果。

算法通俗的讲:就是解决问题的方法和步骤。在计算机发明之前便已经存在。只不过在计算机发明后,其应用变得更为广泛。通过简单的算法,利用电脑的计算速度,可以让问题变得简单。

譬如:计算 1×2×3×4。。。。×999999999×1000000000
如果人为计算,可想而知,即使你用N卡车的纸张都很难计算出来,即使算出来了,也很难保证其准确性。
如果用VB算法:
dim a as integer
a=1
For i =1 to 1000000000
a=a*i
next i
input a
就这样,简单的算法,通过计算机强大的计算能力,问题就解决了。
关于这段算法的解释:i每乘一次,其数值都会增大1,一直乘到1000000000,这样,就将从1到1000000000的每个数都乘了。而且每乘一次,就将结束赋给a,这样,a就代表了前面的相乘的所有结果,一直乘到1000000000。最后得到的a,就是我们想要的。

〓以下是网络复制过来的,如果你有足够耐心,可以参考一下。

算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾着过一本着名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
[编辑本段]算法的复杂度
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
时间复杂度
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
空间复杂度
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
详见网络词条"算法复杂度"
[编辑本段]算法设计与分析的基本方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。
2.递归
递归指的是一个过程:函数不断引用自身,直到引用的对象已知
3.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
5.分治法
把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
6.动态规划法
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
7.迭代法
迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。
[编辑本段]算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。
[编辑本段]举例
经典的算法有很多,如:"欧几里德算法"。
[编辑本段]算法经典专着
目前市面上有许多论述算法的书籍,其中最着名的便是《计算机程序设计艺术》(The Art Of Computer Programming) 以及《算法导论》(Introction To Algorithms)。
[编辑本段]算法的历史
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procere"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。

⑸ 什么是递推法和递归法两者在思想上有何联系

1、递推法:递推算法是一种根据递推关系进行问题求解的方法。通过已知条件,利用特定的递推关系可以得出中间推论,直至得到问题的最终结果。递推算法分为顺推法和逆推法两种。 

2、递归法:在计算机编程中,一个函数在定义或说明中直接或间接调用自身的编程技巧称为递归。通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归做为一种算法在程序设计语言中广泛应用。 

3、两者的联系:在问题求解思想上,递推是从已知条件出发,一步步的递推出未知项,直到问题的解。从思想上讲,递归也是递推的一种,只不过它是对待解问题的递推,直到把一个复杂的问题递推为简单的易解问题。然后再一步步的返回去,从而得到原问题的解。 

(5)算法顺推法填表扩展阅读

相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值。

比如阶乘函数:f(n)=n*f(n-1)  

在f(3)的运算过程中,递归的数据流动过程如下:   f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6}  

而递推如下:   f(0)-->f(1)-->f(2)-->f(3)   由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推。

但是递归作为比较基础的算法,它的作用不能忽视。所以,在把握这两种算法的时候应该特别注意。

⑹ 递推法比较大小

默认第一个数是最大(小)值,然后让第一个与其余的比较,将大的值赋值给第一个数,继续进行比较。当一个数比其他数都大时结束递归。返回的第一个数,就是最大(小)值。
递推算法是一种简单的算法,即通过已知条件,利用特定关系得出中间推论,直至得到结果的算法。递推算法分为顺推和逆推两种。

⑺ 背包问题的算法

3.2 背包问题
背包问题有三种

1.部分背包问题

一个旅行者有一个最多能用m公斤的背包,现在有n种物品,它们的总重量分别是W1,W2,...,Wn,它们的总价值分别为C1,C2,...,Cn.求旅行者能获得最大总价值。

解决问题的方法是贪心算法:将C1/W1,C2/W2,...Cn/Wn,从大到小排序,不停地选择价值与重量比最大的放人背包直到放满为止.

2.0/1背包

一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只有一件求旅行者能获得最大总价值。

<1>分析说明:

显然这个题可用深度优先方法对每件物品进行枚举(选或不选用0,1控制).

程序简单,但是当n的值很大的时候不能满足时间要求,时间复杂度为O(2n)。按递归的思想我们可以把问题分解为子问题,使用递归函数

设 f(i,x)表示前i件物品,总重量不超过x的最优价值

则 f(i,x)=max(f(i-1,x-W[i])+C[i],f(i-1,x))

f(n,m)即为最优解,边界条件为f(0,x)=0 ,f(i,0)=0;

动态规划方法(顺推法)程序如下:

程序如下:

program knapsack02;
const maxm=200;maxn=30;
type ar=array[1..maxn] of integer;
var m,n,j,i:integer;
c,w:ar;
f:array[0..maxn,0..maxm] of integer;
function max(x,y:integer):integer;
begin
if x>y then max:=x else max:=y;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
for i:=1 to m do f(0,i):=0;
for i:=1 to n do f(i,0):=0;

for i:=1 to n do
for j:=1 to m do
begin
if j>=w[i] then f[i,j]:=max(f[i-1,j-w[i]]+c[i],f[i-1,j])
else f[i,j]:=f[i-1,j];
end;
writeln(f[n,m]);
end.

使用二维数组存储各子问题时方便,但当maxm较大时如maxn=2000时不能定义二维数组f,怎么办,其实可以用一维数组,但是上述中j:=1 to m 要改为j:=m downto 1,为什么?请大家自己解决。

3.完全背包问题

一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,

每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.

求旅行者能获得的最大总价值。

本问题的数学模型如下:

设 f(x)表示重量不超过x公斤的最大价值,

则 f(x)=max{f(x-w[i])+c[i]} 当x>=w[i] 1<=i<=n

程序如下:(顺推法)

program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
f:array[0..maxm] of integer;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
f(0):=0;
for i:=1 to m do
for j:=1 to n do
begin
if i>=w[j] then t:=f[i-w[j]]+c[j];
if t>f[i] then f[i]:=t
end;
writeln(f[m]);
end.

⑻ 1加2等于25,2加3等于36,3加4等于47,4加5等于多少

4加5等于58。

1+2=25

2+3=36

3+4=47

每一项都是比前一项多11,也就是1+2=3=25,2+3=5=36,3+4=47,也就是说36比25多11,47比36多11,由此得出4+5=58。

顺推法是从已知条件出发,逐步推算出要解决的问题的方法叫顺推。

如斐波拉契数列,设它的函数为f(n),已知f(1)=1,f(2)=1;f(n)=f(n-2)+f(n-1)(n>=3,n∈N)。则我们通过顺推可以知道,f(3)=f(1)+f(2)=2,f(4)=f(2)+f(3)=3……直至我们要求的解。

逆推法从已知问题的结果出发,用迭代表达式逐步推算出问题的开始的条件,即顺推法的逆过程,称为逆推。

(8)算法顺推法填表扩展阅读

编程语言中,函数Func(Type a,……)直接或间接调用函数本身,则该函数称为递归函数。递归函数不能定义为内联函数。

在数学上,关于递归函数的定义如下:对于某一函数f(x),其定义域是集合A,那么若对于A集合中的某一个值X0,其函数值f(x0)由f(f(x0))决定,那么就称f(x)为递归函数。

一个含直接或间接调用本函数语句的函数被称之为递归函数,在上面的例子中能够看出,它必须满足以下两个条件:

1) 在每一次调用自己时,必须是(在某种意义上)更接近于解;

2) 必须有一个终止处理或计算的准则。

⑼ 运筹学动态规划关于最短路问题用逆推法和顺推法差不多吧,用逆推法要写很多…

差不多的,就好像是对换了起点和终点。最短路的问题用dijkstra算法是最简单的!动态规划解决资源分配和背包问题用逆推法!

⑽ 逆推啥意思

1递推算法分为顺推和逆推两种。所谓逆推法从已知问题的结果出发,用迭代表达式逐步推算出问题的开始的条件,即顺推法的逆过程,称为逆推。
2男孩推到女孩,被女孩推到那就叫逆推,,。解释很浅显,不想多做深入。。一般人都明白,不明白的不是一般人
望采纳!

阅读全文

与算法顺推法填表相关的资料

热点内容
百度下没密码文件怎么解压 浏览:81
拷贝容器外的文件夹 浏览:145
执行命令后如何取消 浏览:593
java二进制对象 浏览:598
图纸一般都在哪个文件夹 浏览:958
移动网加密视频 浏览:58
如何pdf填充颜色 浏览:474
怎么查看c盘有多少文件夹 浏览:682
程序员那么可爱里面的男主角 浏览:731
编程老师的照片墙 浏览:299
函数未定义但是能编译运行 浏览:974
湖南省常德通用压缩机有限公司 浏览:109
服务器的双电是什么意思 浏览:614
程序员离开后代码运行几天 浏览:386
多多乐app是什么干嘛的 浏览:346
文档加密授权工具 浏览:436
命令与征服将军闪退 浏览:132
vs2019预编译怎么设置 浏览:780
沈阳中软python培训班 浏览:493
逆战文件夹怎么放 浏览:120