导航:首页 > 源码编译 > 什么样的应用需要查找算法

什么样的应用需要查找算法

发布时间:2022-09-11 22:21:51

A. 数据结构查找算法这么多有什么用

程序本身就是这两者构成,什么框架都是建立在这两者之上,
现在的人大多是直接学C#,JAVA,特别是C#,一上来什么东西都给你封装,
很多细节程序员是不会知道,什么东西简单一拖OK。
不过这些语言的什么LIST啊,ARRAYLIST等等这些就是一种数据结构,
定义好这形形色色的数据你用起来不觉得更方便了吗?
我的水平比较低,目前的理解是学习数据结构主要是学习算法,算法就是提高你
解决问题的能力,还有就是组织数据的思维方式方法。
我刚完成数据结构学习的第一阶段,感觉还是挺有趣的,学到不少知识,最起码
比WINFORM的拖拖拉拉有趣多了。

B. 搜索算法的应用案例

(1)题目:黑白棋游戏
黑白棋游戏的棋盘由4×4方格阵列构成。棋盘的每一方格中放有1枚棋子,共有8枚白棋子和8枚黑棋子。这16枚棋子的每一种放置方案都构成一个游戏状态。在棋盘上拥有1条公共边的2个方格称为相邻方格。一个方格最多可有4个相邻方格。在玩黑白棋游戏时,每一步可将任何2个相邻方格中棋子互换位置。对于给定的初始游戏状态和目标游戏状态,编程计算从初始游戏状态变化到目标游戏状态的最短着棋序列。
(2)分析
这题我们可以想到用深度优先搜索来做,但是如果下一步出现了以前的状态怎么办?直接判断时间复杂度的可能会有点大,这题的最优解法是用广度优先搜索来做。我们就可以有初始状态按照广度优先搜索遍历来扩展每一个点,这样到达目标状态的步数一定是最优的(步数的增加时单调的)。但问题是如果出现了重复的情况我们就必须要判重,但是朴素的判重是可以达到状态数级别的,其实我们可以考虑用hash表来判重。
Hash表:思路是根据关键码值进行直接访问。也就是说把一个关键码值映射到表中的一个位置来访问记录的过程。在Hash表中,一般插入,查找的时间复杂度可以在O(1)的时间复杂度内搞定。对于这一题我们可以用二进制值表示其hash值,最多2^16次方,所以我们开个2^16次方的表记录这个状态出现没有,这样可以在O(1)的时间复杂度内解决判重问题。
进一步考虑:从初始状态到目标状态,必定会产生很多无用的状态,那还有什么优化可以减少这时间复杂度?我们可以考虑把初始状态和目标状态一起扩展,这样如果初始状态的某个被扩展的点与目标状态所扩展的点相同时,那这两个点不用扩展下去,而两个扩展的步数和也就是答案。
上面的想法是双向广度优先搜索:
就像图二一样,多扩展了很多不必要的状态。
从上面一题可以看到我们用到了两种优化方法,即Hash表优化和双向广搜优化。一般的广度优先搜索用这两个优化就足以解决。

C. 数据结构:重要的查找算法有哪些

折半查找也就是二分查找,它必须满足排序关系。
查找也可以用二叉查找树,一般复杂度为O(logn),最坏为O(n)。
也可用平衡树进行查找,如AVL,Treap,Splay等,可以做到保持O(logn)。

比二分查找性能更优的:大概只有Hash了吧。如果Hash函数设计的好,基本可以认为是O(1)

堆排序比较有意思,值得研究一下,理解了后,很有用~,也很重要。

D. 程序员开发用到的十大基本算法

算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1

算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

算法步骤:

上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

E. 几种查找算法的比较

文章摘要: 查找是在大量的信息中寻找一个特定的信息元素,在计算机应用中,查找是常用的基本运算,文中介绍四种查找算法,分别是顺序查找、二分查找、二叉排序树查找和哈希查找。并用JAVA语言编写了相应程序代码,比较了查找同一个数据的时间复杂度和空间复杂度。

F. 常用的数据查找算法有哪些,各有什么特点编写一查找程序应用于数组的数据查找。

想问下,我的联想是WIN8系统的,打开IE的时候,干嘛显示不出来视频之类的呢,去fllash官网想安装,却说已经安装了,郁闷啊!!!@!

G. 查找算法的作用

查找就是在一个数据集合里查找到你需要的数据,查找算法就是在查找过程中使用的算法。查找算法有好多,最基础的就是线性表查找。
因为提到了算法,所以需要注意的是时间复杂度跟空间复杂度,进而涉及到数据的存储方式,比如数组,链表,矩阵,树,图等等数据结构,这些数据结构可以帮助你降低算法的复杂度。
如果有兴趣,随便找本数据结构书翻翻,里面或多或少都会有讲解。用关键字标识一个数据元素,查找时根据给定的某个值,在表中确定一个关键字的值等于给定值的记录或数据元素。在计算机中进行查找的方法是根据表中的记录的组织结构确定的。顺序查找也称为线形查找,从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。二分查找要求线形表中的结点按关键字值升序或降序排列,用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。分块查找也称为索引查找,把线形分成若干块,在每一块中的数据元素的存储顺序是任意的,但要求块与块之间须按关键字值的大小有序排列,还要建立一个按关键字值递增顺序排列的索引表,索引表中的一项对应线形表中的一块,

H. 学数据结构里面的“查找”等算法有什么用

额,这个确实没什么大用
打个比方吧
就说你用一个软件
会拿鼠标键盘到处涂涂染染就行了,任务也可以完成
但那些软件都不是万能的,总有它不擅长的
但是如果你学一下他是怎么写出来的
你就可以自己写一些小插件,或者再牛点
你就可以自己把代码改一下做一个自己的软件
用着上手还赚钱
这个就是大牛和小菜的区别

阅读全文

与什么样的应用需要查找算法相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:768
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:843
安卓怎么下载60秒生存 浏览:802
外向式文件夹 浏览:235
dospdf 浏览:430
怎么修改腾讯云服务器ip 浏览:387
pdftoeps 浏览:492
为什么鸿蒙那么像安卓 浏览:735
安卓手机怎么拍自媒体视频 浏览:185
单片机各个中断的初始化 浏览:723
python怎么集合元素 浏览:480
python逐条解读 浏览:832
基于单片机的湿度控制 浏览:498
ios如何使用安卓的帐号 浏览:882
程序员公园采访 浏览:811
程序员实战教程要多长时间 浏览:974
企业数据加密技巧 浏览:134
租云服务器开发 浏览:813
程序员告白妈妈不同意 浏览:335
攻城掠地怎么查看服务器 浏览:600