下面给你介绍四种常用排序算法:
1、冒泡排序
特点:效率低,实现简单
思想(从小到大排):每一趟将待排序序列中最大元素移到最后,剩下的为新的待排序序列,重复上述步骤直到排完所有元素。这只是冒泡排序的一种,当然也可以从后往前排。
‘贰’ java快速排序简单代码
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是快速排序算法:
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏誉渣宏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序梁灶通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒庆册泡排序基础上的递归分治法。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:
快速排序的最坏运行情况是 O(n?),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
1. 算法步骤
从数列中挑出一个元素,称为 "基准"(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2. 动图演示
代码实现 JavaScript 实例 function quickSort ( arr , left , right ) {
var len = arr. length ,
partitionIndex ,
left = typeof left != 'number' ? 0 : left ,
right = typeof right != 'number' ? len - 1 : right ;
if ( left
‘叁’ java怎么让数组的数字从大到小排序
将数字从大到小排序的方法:
例如简一点的冒泡排序,将第一个数字和后面的数字逐个比较大小,如果小于,则互换位置,大于则不动。此时,第一个数为数组中的最大数。然后再将第二个数与后面的数逐个比较,以次类推。
示例代码如下:
publicclassTest{
publicstaticvoidmain(String[]args){
int[]array={12,3,1254,235,435,236,25,34,23};
inttemp;
for(inti=0;i<array.length;i++){
for(intj=i+1;j<array.length;j++){
if(array[i]<array[j]){
temp=array[i];
array[i]=array[j];
array[j]=temp; //两个数交换位置
}
}
}
for(inti=0;i<array.length;i++){
System.out.print(array[i]+"");
}
}
}
数组对于每一门编程语言来说都是重要的数据结构之一,当然不同语言对数组的实现及处理也不尽相同。
Java 语言中提供的数组是用来存储固定大小的同类型元素。
你可以声明一个数组变量,如 numbers[100] 来代替直接声明 100 个独立变量 number0,number1,....,number99
(3)java简单选择排序算法扩展阅读
Java中利用数组进行数字排序一般有4种方法:
1、选择排序是先将数组中的第一个数作为最大或最小数,然后通过循环比较交换最大数或最小数与一轮比较中第一个数位置进行排序。
2、冒泡排序也是先将数组中的第一个数作为最大或最小数,循环比较相邻两个数的大小,满足条件就互换位置,将最大数或最小数沉底。
3、快速排序法主要是运用Arrays类中的Arrays.sort方法()实现。
4、插入排序是选择一个数组中的数据,通过不断的插入比较最后进行排序。
‘肆’ java API中所有排序的方法。int
最主要的是冒泡排序、选择排序、插入排序以及快速排序
1、冒泡排序
冒泡排序是一个比较简单的排序方法。在待排序的数列基本有序的情况下排序速度较快。若要排序的数有n个,则需要n-1轮排序,第j轮排序中,从第一个数开始,相邻两数比较,若不符合所要求的顺序,则交换两者的位置;直到第n+1-j个数为止,第一个数与第二个数比较,第二个数与第三个数比较,......,第n-j个与第n+1-j个比较,共比较n-1次。此时第n+1-j个位置上的数已经按要求排好,所以不参加以后的比较和交换操作。例如:第一轮排序:第一个数与第二个数进行比较,若不符合要求的顺序,则交换两者的位置,否则继续进行二个数与第三个数比较......。直到完成第n-1个数与第n个数的比较。此时第n个位置上的数已经按要求排好,它不参与以后的比较和交换操作;第二轮排序:第一个数与第二个数进行比较,......直到完成第n-2个数与第n-1个数的比较;......第n-1轮排序:第一个数与第二个数进行比较,若符合所要求的顺序,则结束冒泡法排序;若不符合要求的顺序,则交换两者的位置,然后结束冒泡法排序。
共n-1轮排序处理,第j轮进行n-j次比较和至多n-j次交换。
从以上排序过程可以看出,较大的数像气泡一样向上冒,而较小的数往下沉,故称冒泡法。
public void bubbleSort(int a[])
{
int n = a.length;
for(int i=0;i<n-1;i++)
{
for(int j=0;j<n-i-1;j++)
{
if(a[j] > a[j+1])
{
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
}
2、选择排序
选择法的原理是先将第一个数与后面的每一个数依次比较,不断将将小的赋给第一个数,从而找出最小的,然后第二个数与后面的每一个数依次比较,从而找出第二小的,然后第三个数与后面的每一个数依次比较,从而找出第三小的.....直到找到最后一个数。
public void sort(int x[])
{
int n=x.length;
int k,t;
for(int i=0;i<n-1;i++)
{
k=i;
for(int j=i+1;j=n;j++)
{
if(x[j]>x[k])k=j;
if(k!=i)
{
t=x[i];
x[i]=x[k];
x[k]=t;
}
}
}
}
3、插入排序
插入排序的原理是对数组中的第i个元素,认为它前面的i-1个已经排序好,然后将它插入到前面的i-1个元素中。插入排序对少量元素的排序较为有效.
public void sort(int obj[])
{
for(int j=1;j<obj.length;j++)
{
int key=obj[j];
int i=j-1;
while(i>=0&&obj[i]>key)
{
obj[i+1]=obj[i];
i--;
}
obj[i+1]=key;
}
}
4、快速排序
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一次排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此大道整个数据变成有序序列。
public void quickSort(int obj[],int low,int high)
{
int i=low;
int j=high;
int keyValue=obj[i];
while(i<j)
{
int temp=0;
while(i<j&&obj[j]>=keyValue)
{
j=j-1;
}
temp=obj[j];
obj[j]=obj[i];
obj[i]=temp;
while(i<j&&obj[i]<=keyValue)
{
i=i+1;
}
temp=obj[j];
obj[j]=ojb[i];
obj[i]=temp;
}
obj[i]=keyValue;
if(low<i-1)
{
quickSort(obj,low,i-1);
}
if(high>i+1)
{
quickSort(obj,i+1,high);
}
}
‘伍’ java怎么实现排序
Java实现几种常见排序方法
日常操作中常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。
以下常见算法的定义
1. 插入排序:插入排序基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入排序的基本思想是:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。
2. 选择排序:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。
3. 冒泡排序:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端。
4. 快速排序:快速排序(Quicksort)是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5. 归并排序:归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
6. 希尔排序:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
https://www.cnblogs.com/wangmingshun/p/5635292.html
‘陆’ 常见的排序算法—选择,冒泡,插入,快速,归并
太久没看代码了,最近打算复习一下java,又突然想到了排序算法,就把几种常见的排序算法用java敲了一遍,这里统一将无序的序列从小到大排列。
选择排序是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小元素,继续放在下一个位置,直到待排序元素个数为0。
选择排序代码如下:
public void Select_sort(int[] arr) {
int temp,index;
for( int i=0;i<10;i++) {
index = i;
for(int j = i + 1 ; j < 10 ; j++) {
if(arr[j] < arr[index])
index = j;
}
/*
temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
*/
swap(arr,i,index);
}
System.out.print("经过选择排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
冒泡排序是一种比较基础的排序算法,其思想是相邻的元素两两比较,较大的元素放后面,较小的元素放前面,这样一次循环下来,最大元素就会归位,若数组中元素个数为n,则经过(n-1)次后,所有元素就依次从小到大排好序了。整个过程如同气泡冒起,因此被称作冒泡排序。
选择排序代码如下:
public void Bubble_sort(int[] arr) {
int temp;
for(int i = 0 ; i < 9 ; i++) {
for(int j = 0 ; j < 10 - i - 1 ;j++) {
if(arr[j] > arr[j+1]) {
/*
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
*/
swap(arr,j,j+1);
}
}
}
System.out.print("经过冒泡排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
插入排序也是一种常见的排序算法,插入排序的思想是:创建一个与待排序数组等大的数组,每次取出一个待排序数组中的元素,然后将其插入到新数组中合适的位置,使新数组中的元素保持从小到大的顺序。
插入排序代码如下:
public void Insert_sort(int[] arr) {
int length = arr.length;
int[] arr_sort = new int[length];
int count = 0;
for(int i = 0;i < length; i++) {
if(count == 0) {
arr_sort[0] = arr[0];
}else if(arr[i] >= arr_sort[count - 1]) {
arr_sort[count] = arr[i];
}else if(arr[i] < arr_sort[0]) {
insert(arr,arr_sort,arr[i],0,count);
}else {
for(int j = 0;j < count - 1; j++) {
if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {
insert(arr,arr_sort,arr[i],j+1,count);
break;
}
}
}
count++;
}
System.out.print("经过插入排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_sort[i] +" ");
System.out.println("");
}
public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {
for(int i = count; i > index; i--)
arr_sort[i] = arr_sort[i-1];
arr_sort[index] = value;
}
快速排序的效率比冒泡排序算法有大幅提升。因为使用冒泡排序时,一次外循环只能归位一个值,有n个元素最多就要执行(n-1)次外循环。而使用快速排序时,一次可以将所有元素按大小分成两堆,也就是平均情况下需要logn轮就可以完成排序。
快速排序的思想是:每趟排序时选出一个基准值(这里以首元素为基准值),然后将所有元素与该基准值比较,并按大小分成左右两堆,然后递归执行该过程,直到所有元素都完成排序。
public void Quick_sort(int[] arr, int left, int right) {
if(left >= right)
return ;
int temp,t;
int j = right;
int i = left;
temp = arr[left];
while(i < j) {
while(arr[j] >= temp && i < j)
j--;
while(arr[i] <= temp && i < j)
i++;
if(i < j) {
t = arr[i];
arr[i] = arr[j];
arr[j] = t;
}
}
arr[left] = arr[i];
arr[i] = temp;
Quick_sort(arr,left, i - 1);
Quick_sort(arr, i + 1, right);
}
归并排序是建立在归并操作上的一种有效的排序算法,归并排序对序列的元素进行逐层折半分组,然后从最小分组开始比较排序,每两个小分组合并成一个大的分组,逐层进行,最终所有的元素都是有序的。
public void Mergesort(int[] arr,int left,int right) {
if(right - left > 0) {
int[] arr_1 = new int[(right - left)/2 + 1];
int[] arr_2 = new int[(right - left + 1)/2];
int j = 0;
int k = 0;
for(int i = left;i <= right;i++) {
if(i <= (right + left)/2) {
arr_1[j++] = arr[i];
}else {
arr_2[k++] = arr[i];
}
}
Mergesort(arr_1,0,(right - left)/2);
Mergesort(arr_2,0,(right - left - 1)/2);
Merge(arr_1,arr_2,arr);
}
}
public void Merge(int[] arr_1,int[] arr_2,int[] arr) {
int i = 0;
int j = 0;
int k = 0;
int L1 = arr_1.length;
int L2 = arr_2.length;
while(i < L1 && j < L2) {
if(arr_1[i] <= arr_2[j]) {
arr[k] = arr_1[i];
i++;
}else {
arr[k] = arr_2[j];
j++;
}
k++;
}
if(i == L1) {
for(int t = j;j < L2;j++)
arr[k++] = arr_2[j];
}else {
for(int t = i;i < L1;i++)
arr[k++] = arr_1[i];
}
}
归并排序这里我使用了left,right等变量,使其可以通用,并没有直接用数字表示那么明确,所以给出相关伪代码,便于理解。
Mergesort(arr[0...n-1])
//输入:一个可排序数组arr[0...n-1]
//输出:非降序排列的数组arr[0...n-1]
if n>1
arr[0...n/2-1] to arr_1[0...(n+1)/2-1]//确保arr_1中元素个数>=arr_2中元素个数
//对于总个数为奇数时,arr_1比arr_2中元素多一个;对于总个数为偶数时,没有影响
arr[n/2...n-1] to arr_2[0...n/2-1]
Mergesort(arr_1[0...(n+1)/2-1])
Mergesort(arr_2[0...n/2-1])
Merge(arr_1,arr_2,arr)
Merge(arr_1[0...p-1],arr_2[0...q-1],arr[0...p+q-1])
//输入:两个有序数组arr_1[0...p-1]和arr_2[0...q-1]
//输出:将arr_1与arr_2两数组合并到arr
int i<-0;j<-0;k<-0
while i
<p span="" do<="" jif arr_1[i] <= arr_2[j]
arr[k] <- arr_1[i]
i<-i+1
else arr[k] <- arr_2[j];j<-j+1
k<-k+1
if i=p
arr_2[j...q-1] to arr[k...p+q-1]
else arr_1[i...p-1] to arr[k...p+q-1]
package test_1;
import java.util.Scanner;
public class Test01 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int[] arr_1 = new int[10];
for(int i = 0 ; i < 10 ; i++)
arr_1[i] = sc.nextInt();
Sort demo_1 = new Sort();
//1~5一次只能运行一个,若多个同时运行,则只有第一个有效,后面几个是无效排序。因为第一个运行的已经将带排序数组排好序。
demo_1.Select_sort(arr_1);//-----------------------1
//demo_1.Bubble_sort(arr_1);//---------------------2
/* //---------------------3
demo_1.Quick_sort(arr_1, 0 , arr_1.length - 1);
System.out.print("经过快速排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_1[i] +" ");
System.out.println("");
*/
//demo_1.Insert_sort(arr_1);//--------------------4
/* //--------------------5
demo_1.Mergesort(arr_1,0,arr_1.length - 1);
System.out.print("经过归并排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_1[i] +" ");
System.out.println("");
*/
}
}
class Sort {
public void swap(int arr[],int a, int b) {
int t;
t = arr[a];
arr[a] = arr[b];
arr[b] = t;
}
public void Select_sort(int[] arr) {
int temp,index;
for( int i=0;i<10;i++) {
index = i;
for(int j = i + 1 ; j < 10 ; j++) {
if(arr[j] < arr[index])
index = j;
}
/*
temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
*/
swap(arr,i,index);
}
System.out.print("经过选择排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
public void Bubble_sort(int[] arr) {
int temp;
for(int i = 0 ; i < 9 ; i++) {
for(int j = 0 ; j < 10 - i - 1 ;j++) {
if(arr[j] > arr[j+1]) {
/*
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
*/
swap(arr,j,j+1);
}
}
}
System.out.print("经过冒泡排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr[i] +" ");
System.out.println("");
}
public void Quick_sort(int[] arr, int left, int right) {
if(left >= right)
return ;
int temp,t;
int j = right;
int i = left;
temp = arr[left];
while(i < j) {
while(arr[j] >= temp && i < j)
j--;
while(arr[i] <= temp && i < j)
i++;
if(i < j) {
t = arr[i];
arr[i] = arr[j];
arr[j] = t;
}
}
arr[left] = arr[i];
arr[i] = temp;
Quick_sort(arr,left, i - 1);
Quick_sort(arr, i + 1, right);
}
public void Insert_sort(int[] arr) {
int length = arr.length;
int[] arr_sort = new int[length];
int count = 0;
for(int i = 0;i < length; i++) {
if(count == 0) {
arr_sort[0] = arr[0];
}else if(arr[i] >= arr_sort[count - 1]) {
arr_sort[count] = arr[i];
}else if(arr[i] < arr_sort[0]) {
insert(arr,arr_sort,arr[i],0,count);
}else {
for(int j = 0;j < count - 1; j++) {
if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {
insert(arr,arr_sort,arr[i],j+1,count);
break;
}
}
}
count++;
}
System.out.print("经过插入排序后:");
for(int i = 0 ; i < 10 ; i++)
System.out.print( arr_sort[i] +" ");
System.out.println("");
}
public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {
for(int i = count; i > index; i--)
arr_sort[i] = arr_sort[i-1];
arr_sort[index] = value;
}
public void Mergesort(int[] arr,int left,int right) {
if(right - left > 0) {
int[] arr_1 = new int[(right - left)/2 + 1];
int[] arr_2 = new int[(right - left + 1)/2];
int j = 0;
int k = 0;
for(int i = left;i <= right;i++) {
if(i <= (right + left)/2) {
arr_1[j++] = arr[i];
}else {
arr_2[k++] = arr[i];
}
}
Mergesort(arr_1,0,(right - left)/2);
Mergesort(arr_2,0,(right - left - 1)/2);
Merge(arr_1,arr_2,arr);
}
}
public void Merge(int[] arr_1,int[] arr_2,int[] arr) {
int i = 0;
int j = 0;
int k = 0;
int L1 = arr_1.length;
int L2 = arr_2.length;
while(i < L1 && j < L2) {
if(arr_1[i] <= arr_2[j]) {
arr[k] = arr_1[i];
i++;
}else {
arr[k] = arr_2[j];
j++;
}
k++;
}
if(i == L1) {
for(int t = j;j < L2;j++)
arr[k++] = arr_2[j];
}else {
for(int t = i;i < L1;i++)
arr[k++] = arr_1[i];
}
}
}
若有错误,麻烦指正,不胜感激。
‘柒’ 选择排序法的算法
简单选择排序算法分析:在简单选择排序过程中,所需移动记录的次数比较少。最好情况下,即待排序记录初始状态就已经是正序排列了,则不需要移动记录。最坏情况下,需要移动记录的次数最多为3(n-1)(此情况中待排序记录并非完全逆序,给完全逆序记录排序的移动次数应为(n/2)*3,其中n/2向下取整)。简单选择排序过程中需要进行的比较次数与初始状态下待排序的记录序列的排列情况无关。当i=1时,需进行n-1次比较;当i=2时,需进行n-2次比较;依次类推,共需要进行的比较次数是∑ =(n-1)+(n-2)+…+2+1=n(n-1)/2,即进行比较操作的时间复杂度为O(n2)。
选择排序法 是对 定位比较交换法(也就是冒泡排序法) 的一种改进。在讲选择排序法之前我们先来了解一下定位比较交换法。为了便于理解,设有10个数分别存在数组元素a[0]~a[9]中。定位比较交换法是由大到小依次定位a[0]~a[9]中恰当的值(和武林大会中的比武差不多),a[9]中放的自然是最小的数。如定位a[0],先假定a[0]中当前值是最大数,a[0]与后面的元素一一比较,如果a[4]更大,则将a[0]、a[4]交换,a[0]已更新再与后面的a[5]~a[9]比较,如果a[8]还要大,则将a[0]、a[8]交换,a[0]又是新数,再与a[9]比较。一轮比完以后,a[0]就是最大的数了,本次比武的武状元诞生了,接下来从a[1]开始,因为状元要休息了,再来一轮a[1]就是次大的数,也就是榜眼,然后从a[2]开始,比出探花,真成比武大会了,当比到a[8]以后,排序就完成了。
下面给大家一个例子:
int main(void)
{
int a[10];
int i,j,t;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*输入10个数,比武报名,报名费用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
for ( j = i + 1; j < 10; j ++)
if ( a[ i ] < a[ j ] ) { t = a[ i ]; a[ i ] = a[ j ]; a[ j ] = t; } /*打不过就要让出头把交椅,不过a[ i ]比较爱面子,不好意思见 a[ j ],让t帮忙*/
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*显示排序后的结果*/
return 0;
}
好啦,啰嗦了半天总算把定位比较排序法讲完了,这个方法不错,容易理解,就是有点麻烦,一把椅子换来换去,哎~
所以就有了下面的选择排序法,开始的时候椅子谁也不给,放在一边让大家看着,找个人k记录比赛结果,然后发椅子。具体来讲呢就是,改进定位比较排序法,但是这个改进只是一部分,比较的次数没变,该怎么打还是怎么打,就是不用换椅子了。每次外循环先将定位元素的小标i值记录到K,认为a[k]是最大元素其实k=i还是a[ i ]最大,a[k]与后面的元素一一比较,该交换的也交换,就是把K的值改变一下就完了,最后在把a[k]与a[ i ]交换,这样a就是最大的元素了。然后进入下一轮的比较。选择排序法与定位比较排序法相比较,比的次数没变,交换的次数减少了。
下面也写个例子:
由大到小时:
int main(void)
{
int a[10];
int i,j,t,k;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*输入10个数,比武报名,报名费用10000¥ ^_^*/
for ( i = 0;i < 9;i ++ ) /*10个数,所以只需比9次*/
{
k = i; /*裁判AND记者实时追踪报道比赛情况*/
for ( j = i + 1; j < 10; j ++)
if ( a[ k ] < a[ j ] ) k = j; /*使a[k]始终表示已比较的数中的最大数*/
if (k!=i)
{ t = a[ i ]; a[ i ] = a[ k ]; a[ k ] = t;} /* t 发放奖品* /
}
for( i = 0; i < 10; i ++) printf("%4d",a[ i ]); /*显示排序后的结果*/
return 0;
}
由小到大时:
int main(void)
{
int a[10];
int i,j,t,k;
for ( i = 0; i < 10; i ++ ) scanf("%d",&a[ i ]); /*输入10个数,比武报名,报名费用10000¥ ^_^*/
for ( i = 0; i < 9; i ++ )
{
k = i; /*裁判AND记者实时追踪报道比赛情况*/
for ( j = i + 1; j < 10; j ++)
if ( a[ k ] > a[ j ] ) k = j;
if (k!=i)
{ t = a[ i ]; a[ i ] = a[ k ]; a[ k ] = t; }/* t 发放奖品*/
}
for( i = 9; i >= 0; i --) printf("%4d",a[ i ]); /*显示排序后的结果*/
return 0;
}
java选择排序法代码public static void main(String[] args) {
Random random=new Random();
int[] pData=new int[10];
for(int i=0;i<pData.length;i++){ //随机生成10个排序数
Integer a =random.nextInt(100);
pData[i]= a;
System.out.print(pData[i]+" ");
}
System.out.println();
pData=Choose(pData);
for(int i=0;i<pData.length;i++){
System.out.print(pData[i]+" ");
}
System.out.println();
}
public static int[] Choose(int[] pData){
System.out.println();
for (int i = 0; i < pData.length; i++) {
for (int j = i; j < pData.length; j++) {
if(pData[j]<pData[i]){
int a=pData[j];
pData[j]=pData[i];
pData[i]=a;
}
}
}
return pData;
}