导航:首页 > 源码编译 > k8s源码搭建

k8s源码搭建

发布时间:2022-09-21 17:47:21

① 搭建k8s有哪些方式

② Kubernetes如何入门

一、初级
1.了解Kubernetes 基础架构与核心组件功能
2.了解Docker基本概念和用法
3.理解Docker与Kubernetes的基本关系
4.能够安装、部署与配置 Kubernetes 集群
5.熟练使用 kubectl 命令操作各种 Kubernetes 资源对象,了解基本概念和使用方法
6.能够在 Kubernetes 上部署、运行、管理工作负载并了解其调度算法
7.能够使用 Service、Ingress 等访问工作负载
8.深入理解Pod相关的配置及使用
9.了解Kubernetes生态相关工具及其作用
二、中级
1.理解Kubernetes的资源管理,资源分配、优先级、QoS等
2.能够使用 Flannel、Calico、Macvlan 等常用 CNI 插件配置集群网络
3.能够排查 Kubernetes 集群系统组件、网络、日志、监控告警与存储的故障
4.能够使用 EFK 搭建容器日志系统
5.能够使用 Prometheus、AlertManager 等搭建容器监控告警系统
6.能够配置应用使用持久性存储并了解 Ceph、NFS、GlusterFS 等常见存储工作原理
7.应用生命周期管理
8.理解Kubernetes容器调度的基本流程和使用方法
9.Kubernetes集群日常维护
10.理解并使用Kubernetes的用户认证及授权体系(RBAC)
11.理解弹性伸缩(HPA)的基本原理
三、高级
1.理解Kubernets核心组件的工作原理,并能够进行问题定位及提供解决方案
2.掌握Kubernetes的admission 控制器,audit,镜像gc,Pod驱赶行为等相关工作原理
3.可以扩展和定制Kubernetes调度器
4.能够用 Operator/CRD 对 Kubernetes 作定制化开发
5.理解 Kubernetes 多可用区/多集群管理模式
6.灵活掌握Kubernetes的扩展机制,可以按需定制,包括CNI、CSI、Ingress、自定义控制器等扩展定制
7.可以解决日志、监控等核心组件的问题定位以及进行性能调优
四、专家
1.能够对 Kubernetes 集群、操作系统、镜像、应用做安全加固
2.能够排查 linux 内核、Docker 容器运行时故障
3.能够基于 Kubernetes、Jenkins等工具构建云原生DevOps方案
4.理解Kubernetes生态主要工具的作用及优缺点,可以在不同场景下灵活运用相关工具并确定最佳实施方案
5.具备对大规模集群支持的相关经验,包括架构设计、性能调优等稳定性保障
6.理解Kubernetes社区运作模式,能够为社区提供PR
7.理解Kubernetes各组件源代码,并能排查、分析相关问题
作为国内领先的全栈云原生技术服务提供商,时速云特别推出了Kubernetes培训课程,对于刚接触Kubernetes技术、企业计划使用容器及Kubernetes集群、以及计划考取CKA证书的人群会是一个不错的选择。

③ 如何 kubernetes源码 编译

我是怎么阅读kubernetes源代码的 每拖进去一个viewconteoller,就新建一对viewcontroller的子对象.比如你想做一个登录界面,拖一个viecomtroller到storyboard里面,然后在你的项目里面添加一个loginInterfac缉长光短叱的癸痊含花e(

④ 服务器搭建k8s内存需要多大

你好!2gb或者4gb都行
1.什么是k8s?
k8s是一个docker容器管理工具
它是一个全新的基于容器技术的分布式架构领先方案,是开源的容器集群管理系统。
在docker的基础上,为容器化的应用提供部署运行,资源调度,服务发现和动态伸缩等一系列完整功能
2.----k8s的优势:
a,容器编排
b,轻量级
c,开源
d,弹性伸缩
e,负载均衡
二:k8s的核心功能
1.自愈: 重新启动失败的容器,在节点不可用时,替换和重新调度节点上的容器,对用户定义的健康检查不响应的容器会被中止,并且在容器准备好服务之前不会把其向客户端广播。
弹性伸缩: 通过监控容器的cpu的负载值,如果这个平均高于80%,增加容器的数量,如果这个平均低于10%,减少容器的数量
服务的自动发现和负载均衡: 不需要修改您的应用程序来使用不熟悉的服务发现机制,Kubernetes 为容器提供了自己的 IP 地址和一组容器的单个 DNS 名称,并可以在它们之间进行负载均衡。
滚动升级和一键回滚: Kubernetes 逐渐部署对应用程序或其配置的更改,同时监视应用程序运行状况,以确保它不会同时终止所有实例。 如果出现问题,Kubernetes会为您恢复更改,利用日益增长的部署解决方案的生态系统。

⑤ kubernetes源码是java

Kubernetes(简称k8s)是Google在2014年6月开源的一个容器集群管理系统,使用Go语言开发,用于管理云平台中多个主机上的容器化的应用,Kubernetes的目标是让部署容器化的应用简单并且高效,Kubernetes提供了资源调度、部署管理、服务发现、扩容缩容、监控,维护等一整套功能。,努力成为跨主机集群的自动部署、扩展以及运行应用程序容器的平台。 它支持一系列容器工具, 包括Docker等。

所以注意:K8s学习有一个前提条件,需要先掌握docker,如果你没有docker基础的话,那还不能学习 K8s k8s它底层的部署容器的那么容器本来就是docker。

还可以通过B站上这个视频教程了解更多:

⑥ 什么是K8S



k8s是什么?

Kubernetes 是一个可移植的,可扩展的开源容器编排平台,用于管理容器化的工作负载和服务,方便了声明式配置和自动化。它拥有一个庞大且快速增长的生态系统。Kubernetes 的服务,支持和工具广泛可用。

为什么现在流行使用容器?

早期: 在物理服务器上面部署应用程序存在资源分配问题,因为其不能在物理服务器中的应用程序定义资源边界,导致应用程序资源利用不足而无法扩展.

后来: 为了解决该问题,引入了虚拟化技术, 虚拟化技术是指允许你在单个物理服务器的 CPU 上运行多个虚拟机,可以让多个应用程序在虚拟机之间进行隔离,具有一定的安全性, 每一个虚拟机就是一台完整的计算机, 在虚拟化硬件之上运行所有组件.

现在: 多数在物理服务器上面部署应用程序都是采kubectl用容器的方式,容器类似于虚拟机,它们都具有自己的文件系统、CPU、内存、进程空间等, 且由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。基于此特点被企业大范围使用.

为什么需要使用k8s容器?

若出现这样一个环境: 在生产环境中如果一个容器发生故障,则我们需要手动去启动另外一个容器,这样的操作是对我们的管理员来说是不太方便的, 若一个容器出现故障,另一个容器可以自动启动容器接管故障的容器,这样是最好的.

k8s就可以实现该效果,Kubernetes 提供了一个可弹性运行分布式系统的框架。 Kubernetes 会满足你的扩展要求、故障转移、部署模式等。

k8s功能: 服务发现和负载均衡, 存储编排, 自动部署和回滚, 自动完成装箱计算, 自我修复, 密钥与配置管理

名词解释

secret

Secret有三种类型:

k8s的组成

k8s是由组件,API,对象等组成.

包含所有相互关联组件的 Kubernetes 集群图如下:

组件


API

Kubernetes 控制面 的核心是 API 服务器。 API 服务器负责提供 HTTP API,以供用户、集群中的不同部分和集群外部组件相互通信。

对象

Kubernetes对象是Kubernetes系统中的持久实体。Kubernetes使用这些实体来表示集群的状态.

具体来说,他们可以描述:

Kubernetes 架构

Kubernetes 架构由节点,控制面到节点通信, 控制器, 云控制器管理器组成.

master 流程图


节点

节点可以是一个虚拟机或者物理机器,取决于所在的集群配置。 每个节点包含运行 Pods 所需的服务, 这些 Pods 由 控制面 负责管理.

节点上的组件包括 kubelet、 容器运行时以及 kube-proxy。

节点状态

可以使用 kubectl 来查看节点状态和其他细节信息:

kubectl describe node <�节点名称>

一个节点包含以下信息:

控制面到节点通信

控制器

在 Kubernetes 中,控制器通过监控集群 的公共状态,并致力于将当前状态转变为期望的状态。

举个例子: 当前室内温度为20度, 我们通过调节遥控器,使其温度上升至24度, 这20度到24度的变化即为让其从当前状态接近期望状态。

控制器模式分为直接控制和通过API服务器来控制.

云控制器管理器

云控制器管理器是指嵌入特定云的控制逻辑的 控制平面组件。 云控制器管理器允许您链接聚合到云提供商的应用编程接口中, 并分离出相互作用的组件与您的集群交互的组件。

云控制器管理器中的控制器包括:

Kubernetes 安全性

云原生安全

云原生安全4个C: 云(Cloud)、集群(Cluster)、容器(Container)和代码(Code)

云原生安全模型的每一层都是基于下一个最外层,代码层受益于强大的基础安全层(云、集群、容器)。我们无法通过在代码层解决安全问题来为基础层中糟糕的安全标准提供保护。

基础设施安全

Kubetnetes 基础架构关注领域

建议

通过网络访问 API 服务(控制平面)

所有对 Kubernetes 控制平面的访问不允许在 Internet 上公开,同时应由网络访问控制列表控制,该列表包含管理集群所需的 IP 地址集。

通过网络访问 Node(节点)

节点应配置为 仅能 从控制平面上通过指定端口来接受(通过网络访问控制列表)连接,以及接受 NodePort 和 LoadBalancer 类型的 Kubernetes 服务连接。如果可能的话,这些节点不应完全暴露在公共互联网上。

Kubernetes 云访问提供商的 API

每个云提供商都需要向 Kubernetes 控制平面和节点授予不同的权限集。为集群提供云提供商访问权限时,最好遵循对需要管理的资源的最小特权原则。Kops 文档提供有关 IAM 策略和角色的信息。

访问 etcd

对 etcd(Kubernetes 的数据存储)的访问应仅限于控制平面。根据配置情况,你应该尝试通过 TLS 来使用 etcd。更多信息可以在 etcd 文档中找到。

etcd 加密

在所有可能的情况下,最好对所有驱动器进行静态数据加密,但是由于 etcd 拥有整个集群的状态(包括机密信息),因此其磁盘更应该进行静态数据加密。

集群组件安全

容器安全

代码安全

Kubernetes架构常见问题

Kubernetes ATTACK 矩阵

信息泄露

云账号AK泄露

API凭证(即阿里云AccessKey)是用户访问内部资源最重要的身份凭证。用户调用API时的通信加密和身份认证会使用API凭证.

API凭证是云上用户调用云服务API、访问云上资源的唯一身份凭证。

API凭证相当于登录密码,用于程序方式调用云服务API.

k8s configfile泄露

kubeconfig文件所在的位置:

$HOME/.kube/config

Kubeconfig文件包含有关Kubernetes集群的详细信息,包括它们的位置和凭据。

云厂商会给用户提供该文件,以便于用户可以通过kubectl对集群进行管理. 如果攻击者能够访问到此文件(如办公网员工机器入侵、泄露到Github的代码等),就可以直接通过API Server接管K8s集群,带来风险隐患。

Master节点SSH登录泄露

常见的容器集群管理方式是通过登录Master节点或运维跳板机,然后再通过kubectl命令工具来控制k8s。

云服务器提供了通过ssh登陆的形式进行登陆master节点.

若Master节点SSH连接地址泄露,攻击者可对ssh登陆进行爆破,从而登陆上ssh,控制集群.

容器组件未鉴权服务

Kubernetes架构下常见的开放服务指纹如下:

注:前六个重点关注: 一旦被控制可以直接获取相应容器、相应节点、集群权限的服务

了解各个组件被攻击时所造成的影响

组件分工图:

假如用户想在集群里面新建一个容器集合单元, 流程如下:

  1. 用户与 kubectl进行交互,提出需求(例: kubectl create -f pod.yaml)
  2. kubectl 会读取 ~/.kube/config 配置,并与 apiserver 进行交互,协议:http/https
  3. apiserver 会协同 ETCD, kube-controller-manager, scheler 等组件准备下发新建容器的配置给到节点,协议:http/https
  4. apiserver 与 kubelet 进行交互,告知其容器创建的需求,协议:http/https;
  5. kubelet 与Docker等容器引擎进行交互,创建容器,协议:http/unix socket.
  6. 容器已然在集群节点上创建成功

攻击apiserver

apiserver介绍:
在Kubernetes中,对于未鉴权对apiserver, 能访问到 apiserver 一般情况下就能获取了集群的权限.

在攻击者眼中Kubernetes APIServer

默认情况下apiserver都有鉴权:

未鉴权配置如下:

对于这类的未鉴权的设置来说,访问到 apiserver 一般情况下就获取了集群的权限:

如何通过apiserver来进行渗透,可参考:https://Kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

攻击kubelet

每一个Node节点都有一个kubelet(每个节点上运行的代理)服务,kubelet监听了10250,10248,10255等端口。

10250端口,是kubelet与apiserver进行通信对主要端口, 通过该端口,kubelet可以知道当前应该处理的任务.该端口在最新版Kubernetes是有鉴权的, 但在开启了接受匿名请求的情况下,不带鉴权信息的请求也可以使用10250提供的能力, 在Kubernetes早期,很多挖矿木马基于该端口进行传播.

在配置文件中,若进行如下配置,则可能存在未授权访问漏洞.

/var/bin/kubulet/config/yaml

若10250端口存在未授权访问漏洞,我们可以直接访问/pods进行查看

根据在pods中获取的信息,我们可以在容器中执行命令

curl -Gks https://host:10250/exec/{namespace}/{podname}/{containername} -d 'input=1' -d 'output=1' -d 'tty=1' -d 'command=whoami'

上述命令得到websocket地址,连接websocket得到命令结果:

使用wscat工具连接websocket

wscat -c “https://X.X.X.X:10250/{websocket}” --no-check

即可得到我们执行命令的结果.

获取token

/var/run/secrets/kubernetes.io/serviceaccount

然后即可访问kube-api server,获取集群权限

curl -ks -H "Authorization: Bearer ttps://master:6443/api/v1/namespaces/{namespace}/secrets

"

攻击kubelet总体步骤如下:

攻击dashboard

dashboard登陆链接如下:

http://xxx.xxx.xxx.xxx:xxxx/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#/login

dashboard界面如下:

dashboard是Kubernetes官方推出的控制Kubernetes的图形化界面.在Kubernetes配置不当导致dashboard未授权访问漏洞的情况下,通过dashboard我们可以控制整个集群。

默认情况下, dashboard是需要进行鉴权操作的,当用户开启了enable-skip-login时可以在登录界面点击Skip跳过登录进入dashboard.

通过skip登陆的dashboard默认是没有操作集群的权限,因为Kubernetes使用RBAC(Role-based access control)机制进行身份认证和权限管理,不同的serviceaccount拥有不同的集群权限。

但有些开发者为了方便或者在测试环境中会为Kubernetes-dashboard绑定cluster-admin这个ClusterRole(cluster-admin拥有管理集群的最高权限).

为Kubernetes-dashboard绑定cluster-admin 设置如下:

  1. 新建dashboard-admin.yaml内容
  2. apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRoleBindingmetadata: name: kubernetes-dashboardroleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-adminsubjects : kind: ServiceAccount name: kubernetes-dashboard namespace: kubernetes-dashboard
  3. kubectl create -f dashboard-admin.yaml

后通过skip登陆dashboard便有了管理集群的权限.

创建Pod控制node节点,该pod主要是将宿主机根目录挂载到容器tmp目录下。

新建一个Pod如下:

通过该容器的tmp目录管理node节点的文件

攻击etcd

Kubernetes默认使用了etcd v3来存储数据, 若能na
etcd对内暴露2379端口,本地127.0.0.1可免认证访问. 其他地址要带—endpoint参数和cert进行认证。

未授权访问流程:

攻击docker remote api(Docker daemon公网暴露)

2375是docker远程操控的默认端口,通过这个端口可以直接对远程的docker 守护进程进行操作。Docker 守护进程默认监听2375端口且未鉴权.

当机器以方式启动daemon时,可以在外部机器对该机器的docker daemon进行直接操作:

docker daemon -H=0.0.0.0:2375

之后依次执行systemctl daemon-reload、systemctl restart docker

外部主机使用 即可操作暴露2375端口的主机.

-H

因此当你有访问到目标Docker API 的网络能力或主机能力的时候,你就拥有了控制当前服务器的能力。我们可以利用Docker API在远程主机上创建一个特权容器,并且挂载主机根目录到容器.

检测目标是否存在docker api未授权访问漏洞的方式也很简单,访问http://[host]:[port]/info路径是否含有ContainersRunning、DockerRootDir等关键字。

攻击kubectl proxy

二次开发所产生的问题

管理Kubernetes无论是使用 kubectl 或 Kubernetes dashboard 的UI功能,其实都是间接在和 APIServer 做交互.

如果有需求对k8s进行二次开发的话,大部分的开发功能请求了 APIServer 的 Rest API 从而使功能实现的。

例如:

类似于这样去调用apiserver, 攻击者若修改namespace、pod和容器名, 那么即可造成越权.

推荐工具

Kube-Hunter扫描漏洞

kube-hunter是一款用于寻找Kubernetes集群中的安全漏洞扫描器

下载地址: https://github.com/aquasecurity/kube-hunter

CDK(强推)

CDK是一款为容器环境定制的渗透测试工具,在已攻陷的容器内部提供零依赖的常用命令及PoC/EXP。集成Docker/K8s场景特有的 逃逸、横向移动、持久化利用方式,插件化管理。

下载地址: https://github.com/cdk-team/CDK/wiki/CDK-Home-CN

参考链接

https://developer.aliyun.com/article/765449?groupCode=aliyunsecurity
https://xz.aliyun.com/t/4276#toc-2
https://www.secrss.com/articles/29544
https://kubernetes.io/zh/docs/concepts/workloads/pods/#what-is-a-pod
https://www.huweihuang.com/kubernetes-notes/concepts/architecture/kubernetes-architecture.html
https://www.kubernetes.org.cn/service-account
https://www.aquasec.com/cloud-native-academy/cloud-native-applications/cloud-native-infrastructure/
https://www.cdxy.me/?p=827

⑦ 企业级k8s集群部署

二进制包

注:推荐用二进制包部署Kubernetes集群,虽手动部署麻烦,但可以学习很多工作原理利于后期维护。

环境

可以使用VMware虚拟机,宿主机必须8G内存以上

• 服务器可以访问外网,有从网上拉取镜像的需求

单Master服务器规划:( 注:部署时候根据具体环境进行IP地址调整即可 )



这里使用3台组建集群,可容忍1台机器故障,当然,你也可以使用5台组建集群

etcd1: 192.168.3.110 etcd2: 192.168.3.112 etcd3: 192.168.3.113

cfssl是一个开源的证书管理工具,使用json文件生成证书,相比openssl更方便使用。

找任意一台服务器操作,这里用Master节点。

创建工作目录:

自签CA:

生成证书:

会生成ca.pem和ca-key.pem文件。

创建证书申请文件:

注:上述文件hosts字段中IP为所有etcd节点的集群内部通信IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。

生成证书:

会生成etcd.pem和etcd-key.pem文件。

https://github.com/etcd-io/etcd/releases/download/v3.5.1/ etcd-v3.5.1-linux-amd64.tar.gz

以下在节点1上操作,然后将文件拷贝到其他集群机器

把刚才生成的证书拷贝到配置文件中的路径:

注意修改节点2和节点3分别etcd.conf配置,按照下面提示的修改

启动各节点的etcd服务

如果输出上面信息,就说明集群部署成功。

如果有问题看日志:/var/log/message

docker二进制下载地址:

https://download.docker.com/linux/static/stable/x86_64/docker-19.03.9.tgz

注:使用yum安装也行

集群所有机器都安装docker

生成证书:

会生成ca.pem和ca-key.pem文件。

创建证书申请文件:

生成证书:

会生成k8s.pem和k8s-key.pem文件。

下载地址参考:

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.20.md

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.20.md#downloads-for-v12013

Wget https://dl.k8s.io/v1.20.13/kubernetes-server-linux-amd64.tar.gz


把刚才生成的证书拷贝到配置文件中的路径:

TLS Bootstrapping 机制,对work-node加入进行自签证书用


创建上述配置文件中token文件:

token 可以自行生产,网络下怎么生产

kube-apiserver服务


生成kube-controller-manager证书:

生成kubeconfig文件(以下是shell命令,直接在终端执行):

生成kube-scheler证书:

生成kubeconfig文件:


生成kubeconfig文件:

通过kubectl工具查看当前集群组件状态:


在所有worker node创建工作目录:

从master节点拷贝:

注:由于网络插件还没有部署,节点会没有准备就绪 NotReady

二进制包下载地址:https://github.com/containernetworking/plugins/releases



确保kubelet启用CNI:




在Master执行:



应用场景:例如kubectl logs

在Master节点将Worker Node涉及文件拷贝到新节点192.168.3.112/113

注:这几个文件是证书申请审批后自动生成的,每个Node不同,必须删除

Node2(192.168.3.113 )节点同上。记得修改主机名!


访问地址:https://NodeIP:30001

创建service account并绑定默认cluster-admin管理员集群角色:

使用输出的token登录Dashboard。

CoreDNS用于集群内部Service名称解析。

DNS解析测试:

这样 单Master集群就搭建完成了



⑧ 计算机网络-k8s网络

K8S网络模型设计:扁平的可连通的网络

K8S的网络是一个极其复杂的网络,如果想要用两个简单的词来描述K8S网络,那么我觉得扁平和可连通是K8S网络最大的特点(不懂隔离性)。

何为连通呢?

二层网络的连通:如果能够直接通过MAC帧直接通信的网络便是二层连通的网络,LAN就是这种网络

比如无限WIFI网络,比如以太网

三层网络的连通:如果能够通过IP报直接通信的网络便是三层连通的网络,便是三层连通

三层网络的连通分为两个部分,第一个部分是三层网络中的每一个LAN都是二层连通的,其次需要存在能够连通的路由来保证;这里可以简单回顾下三层网络通信的流程

通过路由表确定目标ip是否在链路上

如果在链路上,通过arp协议获取对应主机的mac地址,发送mac帧到链路上;

如果不在同一个链路上,通过本地路由表发送mac帧给下一跳,然后下一跳解析mac帧,分析ip报,继续路由直到最终跳到目标网络再次通过mac帧发送到目标主机或者到达ttl消失。

假如其中任何一个步骤不满足或者出问题,三层网络就无法连通

何为扁平呢?

就是希望可以在pod内直接通过IP进行互相通信而不需要在pod内部使用vpn之类的东西来连接其他pod(基础架构化),具体的可以看下k8s对网络的设计与要求。

k8s在设计其网络时,就希望网络对运行在其中的pod是透明的,因此提出了以下的一些要求与原则

k8s组网要求

所有的Pods之间可以在不使用 NAT网络地址转换 的情况下相互通信

所有的Nodes之间可以在不使用NAT网络地址转换的情况下相互通信

每个Pod自己看到的自己的ip和其他Pod看到的一致

k8s网络模型设计原则

每个Pod都拥有一个独立的 IP地址,而且 假定所有 Pod 都在一个可以直接连通的、扁平的网络空间中 。

不管它们是否运行在同 一 个 Node (宿主机)中,都要求它们可以直接通过对方的 IP 进行访问。

设计这个原则的原因 是,用户不需要额外考虑如何建立 Pod 之间的连接,也不需要考虑将容器端口映射到主机端口等问题。

而要想深入了解K8S的网络,就不得不去了解Linux操作系统中的网络以及计算机网络协议栈和一些网络技术

其中关于计算机网络协议栈道部分上次分享已经分享过了,所以本次的主题更多是Linux操作系统的网络以及一些网络技术

Linux操作系统中的网络

首先,我们来看下基本的linux网络,如下图所示

一个APP生成socket数据,然后经过网络协议栈包装IP报文,然后封装成MAC帧,在经过网络协议栈的过程中,会存在netfilters对数据进行一定的处理,同时也会存在路由的过程,

如果在同一个物理链路内,将直接通过ARP协议获取目标IP地址的MAC地址最终发送出去;

如果不在同一个物理链路则通过路由表确定下一跳的MAC地址,封装成MAC帧发送到目标地址。

在这个过程中,会根据路由表选择对应的端口,如果是lo端口,则会将帧原封不动的返回计算机网络协议栈,然后回到监听对应端口的SOCKET里。

如果是以太网端口则走以太网端口,如果是蓝牙或者无线网端口同理。

iptables与netfilters

iptables是一个用户空间的应用程序,通过该程序可以修改一些配置文件,这些文件定义了防火墙的一些行为,netfilters是操作系统内核的一部分,netfilters里有5个回调钩子会触发iptables里的规则;iptables只是Linux防火墙的管理工具而已,位于/sbin/iptables。真正实现防火墙功能的是

netfilter,它是Linux内核中实现包过滤的内部结构。

这里不具体讲述其实现的原理,仅仅列出netfilters的一些功能:

1)filter表——三个链:INPUT、FORWARD、OUTPUT

作用:过滤数据包 内核模块:iptables_filter.

2)Nat表——三个链:PREROUTING、POSTROUTING、OUTPUT

作用:用于网络地址转换(IP、端口) 内核模块:iptable_nat

3)Mangle表——五个链:PREROUTING、POSTROUTING、INPUT、OUTPUT、FORWARD

作用:修改数据包的服务类型、TTL、并且可以配置路由实现QOS内核模块:iptable_mangle(别看这个表这么麻烦,咱们设置策略时几乎都不会用到它)

4)Raw表——两个链:OUTPUT、PREROUTING

作用:决定数据包是否被状态跟踪机制处理 内核模块:iptable_raw

虚拟网络设备 tap/tun

TUN 和 TAP 设备是 Linux 内核虚拟网络设备,纯软件实现。TUN(TUNnel)设备模拟网络层设备,处理三层报文如 IP

报文。TAP 设备模拟链路层设备,处理二层报文,比如以太网帧。TUN 用于路由,而 TAP 用于创建网桥。OS 向连接到 TUN/TAP

设备的用户空间程序发送报文;用户空间程序可像往物理口发送报文那样向 TUN/TAP 口发送报文,在这种情况下,TUN/TAP

设备发送(或注入)报文到 OS 协议栈,就像报文是从物理口收到一样。

虚拟网络设备 veth-pairs

虚拟以太网电缆。使用双向有名管道实现。常用于不同 namespace 之间的通信,即 namespace 数据穿越或容器数据穿越。

虚拟网络设备 bridge

bridge是linux自带的虚拟交换机(网桥),其可以连接多个以太网设备,拥有智能处理MAC帧的能力,流向交换机的MAC帧将智能的被传输到相应的二层链路

网络命名空间

在 Linux 中,网络名字空间可以被认为是隔离的拥有单独网络栈(网卡、路由转发表、iptables)的环境。网络名字空间经常用来隔离网络设备和服务,只有拥有同样网络名字空间的设备,才能看到彼此。

从逻辑上说,网络命名空间是网络栈的副本,有自己的网络设备、路由选择表、邻接表、Netfilter表、网络套接字、网络procfs条目、网络sysfs条目和其他网络资源。

从系统的角度来看,当通过clone()系统调用创建新进程时,传递标志CLONE_NEWNET将在新进程中创建一个全新的网络命名空间。

从用户的角度来看,我们只需使用工具ip(package is iproute2)来创建一个新的持久网络命名空间。

从系统实现来说,就是原本一个数据结构是static公共的,后来变成进程私有的,在PCB里存在一个命名空间的结构,命名空间里有着网络命名空间,网络命名空间拥有着所有跟网络相关的配置数据

默认空的网络命名空间可能只有一个未启动的lo回环网卡。

两个网络命名空间可以通过以太网揽直接连着两个网络命名空间的网卡,也可以通过以太网网桥连接。

通过以太网网桥或者以太网揽连接的两个网络命名空间只能说是在二层连通的,如果希望在三层连通,还需要给每个网络命名空间配置相应的路由表规则以及分配IP地址。

如何使用虚拟网络设备联通网络命名空间

SingleHost容器网络

none模式

本质上就是创建一个网络命名空间,里面没有路由表,也没有通过veths-pair连接任何链路,外部无法访问这个容器,容器也无法访问外部

host模式

本质上就是使用宿主机的默认网络命名空间

container模式

本质上就是将当前容器部署在另一个容器所在的网络命名空间,这样发给本地的报文最终通过回环网卡回到了本机,这是同一个网络命名空间可以互通的原因

bridge模式

桥接模式就是在这些网络命名空间通过veth-pairs连接到同一个虚拟交换机上(二层连通),同时在对应的命名空间配置对应的路由表规则,但是从图片中可以看到交换机另一端连的上网络协议栈。

也就是那些MAC帧都会被宿主机接收,但是宿主机接收并不一定会处理,比如并没有开启ip转发功能(工作于路由器模式还是主机模式),那么不是本地ip的报文都会被丢弃;或者说netfilters拒绝处理

这些奇怪的报文。

理论上,这些容器发送给其他容器的mac报文是会被虚拟交换机智能转发到对应的容器的,这是同一主机不同容器互相连通的原因

假如宿主机配备了相应的路由规则和防火墙规则,那么容器的报文说能够通过路由最终转发出去的,这也是容器访问互联网的原理

但是这种模式是没法运用在多主机的情况下,因为宿主机不知道其他宿主机里的虚拟网络的路由,当相关ip报到达宿主机时,这些ip报将会被宿主机交给默认路由(下一跳:路由器)

最终路由器会把相关的ip报丢失或者到达ttl最终丢失

MultiHost容器网络

路由方案

回顾docker的单机网络模型,我们发现多主机不能通行的原因就在于你只能给当前主机配置路由规则和防火墙规则,而其他主机并不知道这些ip在你的虚拟网络中,假如能够将这些路由信息同步到其他

宿主机,那么网络便会打通。比较直接的想法就是给每台宿主机配置路由规则。而路由规则要求下一跳必须在当前网络,所以假如宿主机是二层互联的,那么通过给这些宿主机同步这些路由规则便能够

实现一个扁平的连通的网络。

其中布置在每一台宿主机可以通过k8s的daemonSet实现,而这种数据的管理可以交给etcd来实现。

这类方案便是基于路由,基于这个方案的实现有基于静态路由的flannel的host-gateway,以及基于动态路由的calico(使用边际路由协议以及一堆深奥的名词的实现)。

下面来看看Flannel的host-gateway原理(每一台宿主机都相当于本机容器网络的路由器):

通过路由方案构建的网络,宿主机也能访问这些虚拟网络里的Pod

询问基德大佬得知国际化sit环境的k8s网络接口实现就是Flannel的Host-gateway,而我们的办公网络和集群网络之间的路由是搭建好的,所以我们应该可以直接通过podId访问pod里的服务

下面是sit环境的两个服务

跟踪路由发现符合猜想

其中10.1.9.56和10.1.1.24就是宿主机的ip,这些宿主机在一个LAN里,这些宿主机相当于虚拟网络中的路由器;

猜测我们办公网和qunhe集群在一个VLAN里(二层可达)

隧道方案

隧道方案比较典型的就是UDP和XVLAN,两者都是使用Overlay网络(覆盖网络,所谓的大二层技术);其实用隧道技术最多的是VPN应用

其中UDP是XVLAN的替代品(早期Linux没有支持XVLAN协议,通过tun/tap技术将流量引到用户空间然后解包生成包再发,因为发生在用户空间而且多次导致性能较差,所以一般不推荐,除非你的linux版本比较低没法用xvlan)

下面就简单介绍下XVLAN技术的大概原理,下图是XVLAN的报文格式,可以发现就是在高层协议的报文里塞了二层报文

其中XVLAN头里有一个关键的字段,VNID这是个24位的字段,每个虚拟的网络主机都有一个自身的VNID作为标识,理论上支持2的24次方个虚拟网络。

在docker的桥接网络里,是使用docker0网桥,在Flannel的xvlan方案里则是使用cni0作为网桥(和docker0没啥区别),主要的不同是cni网桥后面连接的是flannel.1这个网络设备,应该是一个虚拟网卡

这个网卡将原始报文包装成XVLAN报文(linux高版本支持xvlan报文)

这时需要的信息有 源nodeId,目标nodeId,源vnid,源macId,目标macId,源podId,目标podId

其中目标nodeId,目标macId这两个信息是不存在的;因此需要有个方式根据目标podId获取目标nodeId以及目标macId

因此需要记录如何根据目标podId获取目标macId以及目标nodeId即可

这些数据是可以托管在某个地方的,Flannel就是将这些信息记录在etcd上

在每个node上的flannel.1网络设备通过etcd来通过对方的podId获取nodeId和macId

这样最终报文就变成了一个源ip是源nodeIp,目标ip是目标nodeIp的IP报文了(两台宿主机三层可达)

原本经过虚拟网桥是直接连接网络协议栈,但在xvlan模式下,则改为连接一个flannel1,在flannel1中将对原始报文封装成overlay报文转发

udp模式类似,只是udp转发报文说通过tap连通到用户空间,用户空间对报文进行处理然后发送(因为多次内核态用户态切换且数据问题,性能较差,仅在不支持xvlan的低版本linux中使用)

当然xvlan是一个技术,上面只是简单介绍最简单的形式

参考:

开发内功修炼之网络篇: https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5Njg5NDgwNA==&action=getalbum&album_id=1532487451997454337&scene=173&from_msgid=2247485270&from_itemidx=1&count=3&nolastread=1#wechat_redirect

K8S知识图谱: https://zhaohuabing.com/post/2020-02-22-k8s-mindmap/

VXLAN协议原理简介: https://cizixs.com/2017/09/25/vxlan-protocol-introction/

⑨ 在k8s中部署redis cluster实战

  项目需要在k8s上搭建一个redis cluster集群,网上找到的教程例如:
   github原版带配置文件
   在原版基础上补充详细使用步骤但是无配置文件版
   手把手教你一步一步创建的一篇博客
  redis运行在容器中时必须选择一种外部存储方案,用来保存redis的持久化文件,否则容器销毁重建后无法读取到redis的持久化文件(随着容器一同销毁了);并且还要保证容器重建后还能读取到之前对应的持久化文件。上面的教程使用的是nfs存储,但是受于条件限制本文只能使用宿主机的本地目录来做存储,与上面的教程有一些不一样的地方。
  本文的目的是讲一下使用local pv来作为存储创建redis cluster集群的步骤,以及说明过程中需要注意的问题。

  Kubernetes支持几十种类型的后端存储卷,其中本地存储卷有3种,分别是emptyDir、hostPath、local volume,尤其是local与hostPath这两种存储卷类型看起来都是一个意思。这里讲一下区别。

emptyDir

hostPath

local volume

pv的回收策略有三种:Retain、Recycle、Delete,可以在脚本中指定:

也可以在pv创建成功后使用命令修改:

假设有一个pv叫test-pv,绑定的pvc角坐test-pvc,test-pv使用的local pv

会删除test-pv在对应存储空间上的数据。NFS目前不支持 Delete,支持Delete的存储空间有AWS EBS、GCE PD、Azure Disk、OpenStack Cinder Volume 等(网上看的,没测试过)。

  前面已经说过,redis有数据持久化需求,并且同一个pod重启后需要读取原来对应的持久化数据,这一点在不使用k8s时很容易实现(只使用docker不使用k8s时也很容易),启动redis cluster每个节点时指定其持久化目录就行了,但是k8s的Deployment的调度对于我们这个需求来说就显得很随机,你无法指定deployment的每个pod使用哪个存储,并且重启后仍然使用那个存储。
  Deployment不行,Statefulset可以。官方对Statefulset的优点介绍是:

  看完还是比较迷糊,我们可以简单的理解为原地更新,更新后还是原来那个pod,只更新了需要更新的内容(一般是修改自己写的程序,与容器无关)。
  Statefulset和local pv结合,redis cluster的每个pod挂掉后在k8s的调度下重启时都会使用之前自己的持久化文件和节点信息。

  创建StorageClass的目的是deployment中根据StorageClass来自动为每个pod选择一个pv,否则手动为每个pod指定pv又回到了老路上。

  创建6个pv,因为redis cluster最低是三主三从的配置,所以最少需要6个pod。后面的pv2~pv5我就不贴出来了。

  Headless service是StatefulSet实现稳定网络标识的基础,需要提前创建。

  每个Pod都会得到集群内的一个DNS域名,格式为 (service name).$(namespace).svc.cluster.local。可以在pod中ping一下这些域名,是可以解析为pod的ip并ping通的。

  这个service是可以自由发挥的,使用port-forward、NodePort还是ingress你自己选择,我这里只是一个内网访问统一入口。

  至此,redis cluster的六个节点都已经创建成功。下面需要创建集群(此时就是6个单节点的redis,并不是一个集群)。

  我们之前都是通过外部安装redis-trib创建的集群,但是根据 这篇文章 redis 5.0之后已经内置了redis-trib工具,感兴趣的可以尝试。
  专门启动一个Ubuntu/CentOS的容器,可以在该容器中安装Redis-tribe,进而初始化Redis集群,执行:
kubectl run -i --tty centos --image=centos --restart=Never /bin/bash
成功后,我们可以进入centos容器中,执行如下命令安装基本的软件环境:

然后执行如下命令创建集群:

根据提示一步一步完成。

  否则报错例如 MOVED 1545 10.244.3.239:6379","data":false
  如本文的情况,redis cluster的每个节点都是一个跑在k8s里面的pod,这些pod并不能被外部直接访问,而是通过ingress等方法对外暴露一个访问接口,即只有一个统一的ip:port给外部访问。经由k8s的调度,对这个统一接口的访问会被发送到redis集群的某个节点。这时候对redis的用户来说,看起来这就像是一个单节点的redis。但是, 此时无论是直接使用命令行工具redis-cli,还是某种语言的sdk,还是需要按照集群来配置redis的连接信息,才能正确连接 ,例如

  这里-c就代表这是访问集群,又或者springboot的redis配置文件

阅读全文

与k8s源码搭建相关的资料

热点内容
活塞式空气压缩机原理 浏览:791
vt编辑编制编译 浏览:806
抖音优质创作者推荐程序员 浏览:75
摄像机多控神器让拍摄轻松解压 浏览:422
杭州的服务器地址 浏览:277
全医药学大词典pdf 浏览:809
rv1109固件编译不通过 浏览:893
手机进水安卓怎么办 浏览:111
dns服务器如何内网外放 浏览:605
香港云服务器如何访问谷歌 浏览:370
诈骗命令 浏览:498
java使用容器 浏览:503
一个ip一个服务器地址 浏览:438
微信设置里的文件夹 浏览:263
编译原理什么是活跃信息 浏览:810
霍尼韦尔防区编程 浏览:814
esc如何设置到一个文件夹 浏览:772
linux网络超时 浏览:506
人的教育pdf 浏览:366
网络知识pdf 浏览:903