导航:首页 > 源码编译 > 异常流量检测系统实现源码

异常流量检测系统实现源码

发布时间:2022-09-22 10:10:22

⑴ 请教iptables监控本机流量,IP,异常.配置或查看方法

Linux下使用iftop工具结合iptables服务来解决带宽资源被恶意请求满的问题,主要通过2个步骤来实现;1.使用iftop工具查出来是哪些个IP地址在请求主机的带宽资源,找出耗带宽的元兇2.找出耗带宽的IP地址或者段,分析是out方向还是in方向,使用iptables规则来进行控制具体的详细操作方法如下;一但出现带宽被恶意请求,在带宽被请满的情况下基本上很难通过网络登入到服务器上进行操作跟维护,这时我们需要通过阿里云提供的“连接管理终端”服务来登入系统一般建议在主机正常的时候直接在服务器内部安装好iftop工具,这样出现恶意请求的时候直接可以使用该工具来进行排查,下面介绍下iftop的2中安装方法1.使用yum安装iftop工具使用yum安装的话比较简单,只要直接执行yuminstalliftop–y命令即可,如果没问题的话系统就会自动执行安装,但是有使用yum可能安装不了,这时就需要使用编译安装了2.编译安装iftop工具(1)下载iftop工具的源码包;http://oss.aliyuncs.com/aliyunecs/iftop-0.17.tar.gz(2)CentOS下安装所需的依赖包-devellibpcap-devel(3解压缩下载的iftop文件tarzxvfiftop-0.17.tar.gz(4进入到解压的的iftop目录中cdiftop-0.17配置并制定安装目录为/usr/local/iftop目录下(5./configure–prefix=/usr/local/iftop(6)编译并安装make&&makeinstall安装完成以后直接使用/usr/local/iftop/sbin/iftop启动iftop程序查看流量使用情况,如果想使用iftop的方式直接开启程序,需要将iftop的程序添加到环境变量中即可结合使用iptables服务来限制恶意请求的流量;iftop–ieth1查看eth1这块外网网卡的流量使用情况通过上面这张信息很清楚的看到,121.199这台服务器一直往192.230.123.101这个地址发送流量,而且出去产生的流量相当大,几乎把整个出网带宽都给耗尽了查到了恶意请求的原因跟目标主机以后,我们就可以使用iptables服务来对这种恶意行为进行限制了,因为从查看到的数据看主要的流量是从out方向出去的,那就直接在OUT方向设置策略Iptables-AOUTPUT-d192.230.123.101–jREJECT这里可能还会发现一个情况就是禁用了这个1个IP以后可能这个段的其它IP地址都有可能马上就接上继续请求,那就可以针对一个段来进行限制iptables-AOUTPUT-d192.230.0.0/16-jREJECT策略加上以后可以再使用iftop–ieth1来查看流量的请求情况;可以查看到流量已经恢复了正常,之前的恶意请求的地址都已经被防火墙给屏蔽了,效果比较好另外iftop还有很多的参数可以实现比较多的功能,有时间的话可以研究研究,对排查网络流量攻击以及掌控流量使用很有帮助的

⑵ 上网浏览网页时,出现“系统检测到您的计算机网络中存在异常流量”怎么办

上网浏览网页时,出现“系统检测到您的计算机网络中存在异常流量”这是因为路由器上网模式设置错误造成的,具体的解决方法如下:

1、首先在电脑上打开宽带连接的窗口,然后单击属性:

⑶ “宏观网络流量”的定义是什么有哪些异常检测方法

一种互联网宏观流量异常检测方法(2007-11-7 10:37) 摘要:网络流量异常指网络中流量不规则地显着变化。网络短暂拥塞、分布式拒绝服务攻击、大范围扫描等本地事件或者网络路由异常等全局事件都能够引起网络的异常。网络异常的检测和分析对于网络安全应急响应部门非常重要,但是宏观流量异常检测需要从大量高维的富含噪声的数据中提取和解释异常模式,因此变得很困难。文章提出一种分析网络异常的通用方法,该方法运用主成分分析手段将高维空间划分为对应正常和异常网络行为的子空间,并将流量向量影射在正常子空间中,使用基于距离的度量来检测宏观网络流量异常事件。公共互联网正在社会生活的各个领域发挥着越来越重要的作用,与此同时,由互联网的开放性和应用系统的复杂性所带来的安全风险也随之增多。2006年,国家计算机网络应急技术处理协调中心(CNCERT/CC)共接收26 476件非扫描类网络安全事件报告,与2005年相比增加2倍,超过2003—2005年3年的总和。2006年,CNCERT/CC利用部署的863-917网络安全监测平台,抽样监测发现中国大陆地区约4.5万个IP地址的主机被植入木马,与2005年同期相比增加1倍;约有1千多万个IP地址的主机被植入僵尸程序,被境外约1.6万个主机进行控制。黑客利用木马、僵尸网络等技术操纵数万甚至上百万台被入侵的计算机,释放恶意代码、发送垃圾邮件,并实施分布式拒绝服务攻击,这对包括骨干网在内的整个互联网网络带来严重的威胁。由数万台机器同时发起的分布式拒绝服务攻击能够在短时间内耗尽城域网甚至骨干网的带宽,从而造成局部的互联网崩溃。由于政府、金融、证券、能源、海关等重要信息系统的诸多业务依赖互联网开展,互联网骨干网络的崩溃不仅会带来巨额的商业损失,还会严重威胁国家安全。据不完全统计,2001年7月19日爆发的红色代码蠕虫病毒造成的损失估计超过20亿美元;2001年9月18日爆发的Nimda蠕虫病毒造成的经济损失超过26亿美元;2003年1月爆发的SQL Slammer蠕虫病毒造成经济损失超过12亿美元。针对目前互联网宏观网络安全需求,本文研究并提出一种宏观网络流量异常检测方法,能够在骨干网络层面对流量异常进行分析,在大规模安全事件爆发时进行快速有效的监测,从而为网络防御赢得时间。1 网络流量异常检测研究现状在骨干网络层面进行宏观网络流量异常检测时,巨大流量的实时处理和未知攻击的检测给传统入侵检测技术带来了很大的挑战。在流量异常检测方面,国内外的学术机构和企业不断探讨并提出了多种检测方法[1]。经典的流量监测方法是基于阈值基线的检测方法,这种方法通过对历史数据的分析建立正常的参考基线范围,一旦超出此范围就判断为异常,它的特点是简单、计算复杂度小,适用于实时检测,然而它作为一种实用的检测手段时,需要结合网络流量的特点进行修正和改进。另一种常用的方法是基于统计的检测,如一般似然比(GLR)检测方法[2],它考虑两个相邻的时间窗口以及由这两个窗口构成的合并窗口,每个窗口都用自回归模型拟合,并计算各窗口序列残差的联合似然比,然后与某个预先设定的阈值T 进行比较,当超过阈值T 时,则窗口边界被认定为异常点。这种检测方法对于流量的突变检测比较有效,但是由于它的阈值不是自动选取,并且当异常持续长度超过窗口长度时,该方法将出现部分失效。统计学模型在流量异常检测中具有广阔的研究前景,不同的统计学建模方式能够产生不同的检测方法。最近有许多学者研究了基于变换域进行流量异常检测的方法[3],基于变换域的方法通常将时域的流量信号变换到频域或者小波域,然后依据变换后的空间特征进行异常监测。P. Barford等人[4]将小波分析理论运用于流量异常检测,并给出了基于其理论的4类异常结果,但该方法的计算过于复杂,不适于在高速骨干网上进行实时检测。Lakhina等人[5-6]利用主成分分析方法(PCA),将源和目标之间的数据流高维结构空间进行PCA分解,归结到3个主成分上,以3个新的复合变量来重构网络流的特征,并以此发展出一套检测方法。此外还有一些其他的监测方法[7],例如基于Markov模型的网络状态转换概率检测方法,将每种类型的事件定义为系统状态,通过过程转换模型来描述所预测的正常的网络特征,当到来的流量特征与期望特征产生偏差时进行报警。又如LERAD检测[8],它是基于网络安全特征的检测,这种方法通过学习得到流量属性之间的正常的关联规则,然后建立正常的规则集,在实际检测中对流量进行规则匹配,对违反规则的流量进行告警。这种方法能够对发生异常的地址进行定位,并对异常的程度进行量化。但学习需要大量正常模式下的纯净数据,这在实际的网络中并不容易实现。随着宏观网络异常流量检测成为网络安全的技术热点,一些厂商纷纷推出了电信级的异常流量检测产品,如Arbor公司的Peakflow、GenieNRM公司的GenieNTG 2100、NetScout公司的nGenius等。国外一些研究机构在政府资助下,开始部署宏观网络异常监测的项目,并取得了较好的成绩,如美国研究机构CERT建立了SiLK和AirCERT项目,澳大利亚启动了NMAC流量监测系统等项目。针对宏观网络异常流量监测的需要,CNCERT/CC部署运行863-917网络安全监测平台,采用分布式的架构,能够通过多点对骨干网络实现流量监测,通过分析协议、地址、端口、包长、流量、时序等信息,达到对中国互联网宏观运行状态的监测。本文基于863-917网络安全监测平台获取流量信息,构成监测矩阵,矩阵的行向量由源地址数量、目的地址数量、传输控制协议(TCP)字节数、TCP报文数、数据报协议(UDP)字节数、UDP报文数、其他流量字节数、其他流量报文书、WEB流量字节数、WEB流量报文数、TOP10个源IP占总字节比例、TOP10个源IP占总报文数比例、TOP10个目的IP占总字节数比例、TOP10个目的IP占总报文数比例14个部分组成,系统每5分钟产生一个行向量,观测窗口为6小时,从而形成了一个72×14的数量矩阵。由于在这14个观测向量之间存在着一定的相关性,这使得利用较少的变量反映原来变量的信息成为可能。本项目采用了主成份分析法对观测数据进行数据降维和特征提取,下面对该算法的工作原理进行介绍。 2 主成分分析技术主成分分析是一种坐标变换的方法,将给定数据集的点映射到一个新轴上面,这些新轴称为主成分。主成分在代数学上是p 个随机变量X 1, X 2……X p 的一系列的线性组合,在几何学中这些现线性组合代表选取一个新的坐标系,它是以X 1,X 2……X p 为坐标轴的原来坐标系旋转得到。新坐标轴代表数据变异性最大的方向,并且提供对于协方差结果的一个较为简单但更精练的刻画。主成分只是依赖于X 1,X 2……X p 的协方差矩阵,它是通过一组变量的几个线性组合来解释这些变量的协方差结构,通常用于高维数据的解释和数据的压缩。通常p 个成分能够完全地再现全系统的变异性,但是大部分的变异性常常能够只用少量k 个主成分就能够说明,在这种情况下,这k 个主成分中所包含的信息和那p 个原变量做包含的几乎一样多,于是可以使用k 个主成分来代替原来p 个初始的变量,并且由对p 个变量的n 次测量结果所组成的原始数据集合,能够被压缩成为对于k 个主成分的n 次测量结果进行分析。运用主成分分析的方法常常能够揭示出一些先前不曾预料的关系,因而能够对于数据给出一些不同寻常的解释。当使用零均值的数据进行处理时,每一个主成分指向了变化最大的方向。主轴以变化量的大小为序,一个主成分捕捉到在一个轴向上最大变化的方向,另一个主成分捕捉到在正交方向上的另一个变化。设随机向量X '=[X 1,X 1……X p ]有协方差矩阵∑,其特征值λ1≥λ2……λp≥0。考虑线性组合:Y1 =a 1 'X =a 11X 1+a 12X 2……a 1pX pY2 =a 2 'X =a 21X 1+a 22X 2……a 2pX p……Yp =a p'X =a p 1X 1+a p 2X 2……a p pX p从而得到:Var (Yi )=a i' ∑a i ,(i =1,2……p )Cov (Yi ,Yk )=a i '∑a k ,(i ,k =1,2……p )主成分就是那些不相关的Y 的线性组合,它们能够使得方差尽可能大。第一主成分是有最大方差的线性组合,也即它能够使得Var (Yi )=a i' ∑a i 最大化。我们只是关注有单位长度的系数向量,因此我们定义:第1主成分=线性组合a 1'X,在a1'a 1=1时,它能够使得Var (a1 'X )最大;第2主成分=线性组合a 2 'X,在a2'a 2=1和Cov(a 1 'X,a 2 'X )=0时,它能够使得Var (a 2 'X )最大;第i 个主成分=线性组合a i'X,在a1'a 1=1和Cov(a i'X,a k'X )=0(k<i )时,它能够使得Var (a i'X )最大。由此可知主成分都是不相关的,它们的方差等于协方差矩阵的特征值。总方差中属于第k个主成分(被第k个主成分所解释)的比例为:如果总方差相当大的部分归属于第1个、第2个或者前几个成分,而p较大的时候,那么前几个主成分就能够取代原来的p个变量来对于原有的数据矩阵进行解释,而且信息损失不多。在本项目中,对于一个包含14个特征的矩阵进行主成分分析可知,特征的最大变化基本上能够被2到3个主成分捕捉到,这种主成分变化曲线的陡降特性构成了划分正常子空间和异常子空间的基础。3 异常检测算法本项目的异常流量检测过程分为3个阶段:建模阶段、检测阶段和评估阶段。下面对每个阶段的算法进行详细的介绍。3.1 建模阶段本项目采用滑动时间窗口建模,将当前时刻前的72个样本作为建模空间,这72个样本的数据构成了一个数据矩阵X。在试验中,矩阵的行向量由14个元素构成。主成份分为正常主成分和异常主成份,它们分别代表了网络中的正常流量和异常流量,二者的区别主要体现在变化趋势上。正常主成份随时间的变化较为平缓,呈现出明显的周期性;异常主成份随时间的变化幅度较大,呈现出较强的突发性。根据采样数据,判断正常主成分的算法是:依据主成分和采样数据计算出第一主成分变量,求第一主成分变量这72个数值的均值μ1和方差σ1,找出第一主成分变量中偏离均值最大的元素,判断其偏离均值的程度是否超过了3σ1。如果第一主成分变量的最大偏离超过了阈值,取第一主成份为正常主成分,其他主成份均为异常主成分,取主成份转换矩阵U =[L 1];如果最大偏离未超过阈值,转入判断第下一主成分,最后取得U =[L 1……L i -1]。第一主成份具有较强的周期性,随后的主成份的周期性渐弱,突发性渐强,这也体现了网络中正常流量和异常流量的差别。在得到主成份转换矩阵U后,针对每一个采样数据Sk =xk 1,xk 2……xk p ),将其主成份投影到p维空间进行重建,重建后的向量为:Tk =UU T (Sk -X )T计算该采样数据重建前与重建后向量之间的欧氏距离,称之为残差:dk =||Sk -Tk ||根据采样数据,我们分别计算72次采样数据的残差,然后求其均值μd 和标准差σd 。转换矩阵U、残差均值μd 、残差标准差σd 是我们构造的网络流量模型,也是进行流量异常检测的前提条件。 3.2 检测阶段在通过建模得到网络流量模型后,对于新的观测向量N,(n 1,n 2……np ),采用与建模阶段类似的分析方法,将其中心化:Nd =N -X然后将中心化后的向量投影到p维空间重建,并计算残差:Td =UUTNdTd =||Nd -Td ||如果该观测值正常,则重建前与重建后向量应该非常相似,计算出的残差d 应该很小;如果观测值代表的流量与建模时发生了明显变化,则计算出的残差值会较大。本项目利用如下算法对残差进行量化:3.3 评估阶段评估阶段的任务是根据当前观测向量的量化值q (d ),判断网络流量是否正常。根据经验,如果|q (d )|<5,网络基本正常;如果5≤|q (d )|<10,网络轻度异常;如果10≤|q (d )|,网络重度异常。4 实验结果分析利用863-917网络安全监测平台,对北京电信骨干网流量进行持续监测,我们提取6小时的观测数据,由于篇幅所限,我们给出图1—4的时间序列曲线。由图1—4可知单独利用任何一个曲线都难以判定异常,而利用本算法可以容易地标定异常发生的时间。本算法计算结果如图5所示,异常发生时间在图5中标出。我们利用863-917平台的回溯功能对于异常发生时间进行进一步的分析,发现在标出的异常时刻,一个大规模的僵尸网络对网外的3个IP地址发起了大规模的拒绝服务攻击。 5 结束语本文提出一种基于主成分分析的方法来划分子空间,分析和发现网络中的异常事件。本方法能够准确快速地标定异常发生的时间点,从而帮助网络安全应急响应部门及时发现宏观网络的流量异常状况,为迅速解决网络异常赢得时间。试验表明,我们采用的14个特征构成的分析矩阵具有较好的识别准确率和分析效率,我们接下来将会继续寻找更具有代表性的特征来构成数据矩阵,并研究更好的特征矩阵构造方法来进一步提高此方法的识别率,并将本方法推广到短时分析中。6 参考文献[1] XU K, ZHANG Z L, BHATTACHARYYA S. Profiling Internet backbone traffic: Behavior models and applications [C]// Proceedings of ACM SIGCOMM, Aug 22- 25, 2005, Philadelphia, PA, USA. New York, NY,USA:ACM,2005:169-180.[2] HAWKINS D M, QQUI P, KANG C W. The change point model for statistical process control [J]. Journal of Quality Technology,2003, 35(4).[3] THOTTAN M, JI C. Anomaly detection in IP networks [J]. IEEE Transactions on Signal Processing, 2003, 51 )8):2191-2204.[4] BARFORD P, KLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [C]//Proceedings of ACM SIGCOMM Intemet Measurement Workshop (IMW 2002), Nov 6-8, 2002, Marseilles, France. New York, NY,USA:ACM, 2002:71-82.[5] LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of SIGCOMM, Aug 22-25, 2005, Philadelphia, PA, USA. New York, NY,USA: ACM, 2005: 217-228.[6] LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM, Aug 30 - Sep 3, 2004, Portland, OR, USA. New York, NY,USA: ACM, 2004: 219-230.[7] SCHWELLER R, GUPTA A, PARSONS E, et al. Reversible sketches for efficient and accurate change detection over network data streams [C]//Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC’04), Oct 25-27, 2004, Taormina, Sicily, Italy. New York, NY,USA: ACM, 2004:207-212.[8] MAHONEY M V, CHAN P K. Learning rules for anomaly detection of hostile network traffic [C]// Proceedings of International Conference on Data Mining (ICDM’03), Nov 19-22, Melbourne, FL, USA . Los Alamitos, CA, USA: IEEE Computer Society, 2003:601-604.

⑷ 联通云盾抗d先锋异常流量监测的方式

分析联通骨干网全网的流量数据,实时发现网络中的DDos攻击事件,并告知用户。
选择关闭服务,则当天再上网“一起沃上网助手”图标不再出现;次日您再上网一起沃上网助手仍会显示,让您继续掌握流量使用情况。
这种团队研发的全网络流量可视化监测系统,可在后台实现对全网流量的实时感知。

⑸ 如何查看Linux服务器中,异常流量来自哪个IP

Linux下使用iftop工具结合iptables服务来解决带宽资源被恶意请求满的问题,主要通过2个步骤来实现;
1. 使用iftop工具查出来是哪些个IP地址在请求主机的带宽资源,找出耗带宽的元兇
2. 找出耗带宽的IP地址或者段,分析是out方向还是in方向,使用iptables规则来进行控制

具体的详细操作方法如下;
一但出现带宽被恶意请求,在带宽被请满的情况下基本上很难通过网络登入到服务器上进行操作跟维护,这时我们需要通过阿里云提供的“连接管理终端”服务来登入系统
一般建议在主机正常的时候直接在服务器内部安装好iftop工具,这样出现恶意请求的时候直接可以使用该工具来进行排查,下面介绍下iftop的2中安装方法
1.使用yum 安装iftop工具
使用yum安装的话比较简单,只要直接执行 yum install iftop –y命令即可,如果没问题的话系统就会自动执行安装,但是有使用yum可能安装不了,这时就需要使用编译安装了
2.编译安装iftop工具
(1)下载iftop工具的源码包;
http://oss.aliyuncs.com/aliyunecs/iftop-0.17.tar.gz
(2)CentOS下安装所需的依赖包
yum install flex byacc libpcap ncursesncurses-devel libpcap-devel
(3 解压缩下载的iftop文件
tarzxvf iftop-0.17.tar.gz
(4 进入到解压的的iftop目录中
cdiftop-0.17
配置并制定安装目录为/usr/local/iftop目录下
(5./configure –prefix=/usr/local/iftop
(6)编译并安装
make && make install
安装完成以后直接使用/usr/local/iftop/sbin/iftop 启动iftop程序查看流量使用情况,如果想使用iftop的方式直接开启程序,需要将iftop的程序添加到环境变量中即可
结合使用iptables服务来限制恶意请求的流量;
iftop –i eth1 查看eth1这块外网网卡的流量使用情况

通过上面这张信息很清楚的看到,121.199这台服务器一直往192.230.123.101 这个地址发送流量,而且出去产生的流量相当大,几乎把整个出网带宽都给耗尽了
查到了恶意请求的原因跟目标主机以后,我们就可以使用iptables服务来对这种恶意行为进行限制了,因为从查看到的数据看主要的流量是从out方向出去的,那就直接在OUT方向设置策略
Iptables -A OUTPUT -d 192.230.123.101 –j REJECT
这里可能还会发现一个情况就是禁用了这个1个IP以后可能这个段的其它IP地址都有可能马上就接上继续请求,那就可以针对一个段来进行限制
iptables-A OUTPUT -d 192.230.0.0/16 -j REJECT
策略加上以后可以再使用iftop –i eth1 来查看流量的请求情况;

可以查看到流量已经恢复了正常,之前的恶意请求的地址都已经被防火墙给屏蔽了,效果比较好
另外iftop还有很多的参数可以实现比较多的功能,有时间的话可以研究研究,对排查网络流量攻击以及掌控流量使用很有帮助的

⑹ 我们的系统检测到您的计算机网络中存在异常流量.请稍后重新发送

此提示是浏览器为了防范机器自动查询而采取的措施,但对于多人使用同一对外IP的情况也会造成误报,比如身处局域网或者使用了代理服务器等网络条件下。

解决方法:

1、输入验证码,一般输入2次验证码之后即可解除提示。

2、如果使用的是局域网,要么联系网管解决,要么自行使用代理服务器。

3、如果使用了代理服务器,不用或者更换代理服务器。

4、如果是个人宽带,重新进行宽带拨号或者重启路由器获得一个新IP。

(6)异常流量检测系统实现源码扩展阅读:

注意事项:

1、从工作方式上看,计算机网络可以分为边缘部分和核心部分。 边缘部分是指用户直接使用的、连接在因特网上的主机, 而核心部分是指大量的网络和连接这些网络的路由器,它为边缘部分提供了连通性和交换服务。

2、分布式处理。当计算机网络中的某个计算机系统负荷过重时,就可以将其处理的任务传送到网络的其他计算机系统中,利用空闲计算机资源以提高整个系统的运行效率。

3、按照网络的拓扑结构,主要分为星形、总线型、环形和网络形网络。 其中前三者多用于局域网,网络形网络多用于广域网。

阅读全文

与异常流量检测系统实现源码相关的资料

热点内容
加密空投与硬分叉指南 浏览:15
加密wps文档密码忘了怎么办 浏览:685
冲程算法 浏览:988
鸡料与鸡粪的算法 浏览:833
phpif变量为空值 浏览:59
iot编译器异常 浏览:600
代理服务器被禁用怎么上网 浏览:411
隐私加密怎么设置密码 浏览:940
马丁靴补色解压 浏览:565
在设置app上怎么找到个人热点 浏览:754
按照档案号生成文件夹 浏览:1000
程序员转方向 浏览:111
lol敏捷加密 浏览:882
传统公司眼中的加密货币 浏览:430
电脑图标又出现文件夹怎么去掉 浏览:964
排序算法c和a 浏览:418
手机拍照上传android 浏览:343
linux压缩率 浏览:614
电脑浏览器加密端口 浏览:536
单片机线性电源 浏览:268