导航:首页 > 源码编译 > 奇偶性特征计算法

奇偶性特征计算法

发布时间:2022-09-22 19:58:50

❶ 怎么求函数的奇偶性。

判定奇偶性四法:

(1)定义法

用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。

(2)用必要条件

具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。

例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。

(3)用对称性

若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。

(4)用函数运算

如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。

❷ 奇偶特性口诀是什么

奇偶性的口诀:内偶则偶,内奇同外。验证奇偶性的前提:请求函数的定义域必须关于原点对称。

函数奇偶性判断:

偶函数±偶函数=偶函数。

奇函数×奇函数=偶函数。

偶函数×偶函数=偶函数。

奇函数×偶函数=奇函数。

上述奇偶函数乘法规律可总结为:同偶异奇。

判定方法

1、先分解函数为常见的一样函数,比似多项式x^n,三角函数,判定奇偶性。

2、根据分解的'函数之间的计算法则判定,一样只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)。

3、若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇。

4、若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶。

5、若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇。

❸ 奇偶性的判断方法是

奇偶性的判断方法:

(1)定义法

用定义来判断函数奇偶性,是主要方法,首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。

(2)用必要条件

具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。

例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。

(3)用对称性

若f(x)的图象关于原点对称,则 f(x)是奇函数。

若f(x)的图象关于y轴对称,则 f(x)是偶函数。

(4)用函数运算

如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。

类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。



(3)奇偶性特征计算法扩展阅读:

偶函数在对称区间上的单调性是相反的。奇函数在整个定义域上的单调性一致。两个偶函数相加所得的和为偶函数,两个奇函数相加所得的和为奇函数。

两个偶函数相乘所得的积为偶函数,两个奇函数相乘所得的积为偶函数,一个偶函数与一个奇函数相乘所得的积为奇函数。

几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数,偶函数的和差积商是偶函数。

奇函数的和差是奇函数,奇函数的偶数个积商是偶函数,奇函数的奇数个积商是奇函数,奇函数的绝对值为偶函数,偶函数的绝对值为偶函数。

❹ 奇偶性的运算

⑴ 两个偶函数相加所得的和为偶函数。
⑵ 两个奇函数相加所得的和为奇函数。
⑶ 两个偶函数相乘所得的积为偶函数。
⑷ 两个奇函数相乘所得的积为偶函数。
⑸一个偶函数与一个奇函数相乘所得的积为奇函数。
⑹几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。
⑺偶函数的和差积商是偶函数。
⑻奇函数的和差是奇函数。
⑼奇函数的偶数个积商是偶函数。
⑽奇函数的奇数个积商是奇函数。
⑾奇函数的绝对值为偶函数。
⑿偶函数的绝对值为偶函数。

❺ 函数奇偶性的算法

1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=ˉf(x 〕那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,都有f(x)=0,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图像关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
f(x)为偶函数《==》f(x)的图像关于Y轴对称
点(x,y)→(-x,y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。

❻ 怎么判断函数奇偶性

(1)奇函数在对称的单调区间内有相同的单调性

偶函数在对称的单调区间内有相反的单调性

(2)若f(x-a)为奇函数,则f(x)的图像关于点(a,0)对称

若f(x-a)为偶函数,则f(x)的图像关于直线x=a对称

(3)在f(x),g(x)的公共定义域上:奇函数±奇函数=奇函数

偶函数±偶函数=偶函数

奇函数×奇函数=偶函数

偶函数×偶函数=偶函数

奇函数×偶函数=奇函数


(6)奇偶性特征计算法扩展阅读

函数的早期概念:

十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。

1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

❼ 函数的奇偶性的运算法则

运算法则

(1) 两个偶函数相加所得的和为偶函数。

(2) 两个奇函数相加所得的和为奇函数。

(3) 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

(4) 两个偶函数相乘所得的积为偶函数。

(5) 两个奇函数相乘所得的积为偶函数。

(6) 一个偶函数与一个奇函数相乘所得的积为奇函数。

(7)奇偶性特征计算法扩展阅读:

1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。

2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。

3、对于F(x)=f[g(x)]:

若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。

若g(x) 是偶函数且f(x)是奇函数,则F[x]是偶函数。

若g(x)是奇函数且f(x)是奇函数,则F[x]是奇函数。

若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。

4、奇函数与偶函数的定义域必须关于原点对称。

❽ 怎么求函数奇偶性啊,详细一点的步骤

首先求函数定义域,看定义域是否关于原点对称,不对称则非奇非偶,若定义域关于原点对称了,再看f(-x)=什么,等于f(x)就是偶函数,等于-f(x)就是奇函数。


数学:

数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。



❾ 函数的奇偶性口诀 如何判断奇偶性

内偶则偶,内奇同外。偶函数±偶函数=偶函数;奇函数×奇函数=偶函数;偶函数×偶函数=偶函数;奇函数×偶函数=奇函数。

函数的奇偶性判断方法

(1)定义法

用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。

(2)用必要条件

具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。

例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。

(3)用对称性

若f(x)的图象关于原点对称,则f(x)是奇函数。

若f(x)的图象关于y轴对称,则f(x)是偶函数。

(4)用函数运算

如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)•g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。

类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。

函数奇偶性运算

⑴两个偶函数相加所得的和为偶函数。

⑵两个奇函数相加所得的和为奇函数。

⑶两个偶函数相乘所得的积为偶函数。

⑷两个奇函数相乘所得的积为偶函数。

⑸一个偶函数与一个奇函数相乘所得的积为奇函数。

⑹几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。

⑺偶函数的和差积商是偶函数。

⑻奇函数的和差是奇函数。

⑼奇函数的偶数个积商是偶函数。

⑽奇函数的奇数个积商是奇函数。

⑾奇函数的绝对值为偶函数。

⑿偶函数的绝对值为偶函数。

❿ 奇偶性怎么求

奇偶性
1.定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图像的特征:

定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
单调函数
一般地,设函数f(x)的定义域为I:

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2).那么就是f(x)在这个区间上是减函数。

如果函数y=f(x)在某个区间是增函数或减函数。那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间,在单调区间上增函数的图像是上升的,减函数的图像是下降的。

注意:(1)函数的单调性也叫函数的增减性;

(2)函数的单调性是对某个区间而言的,它是一个局部概念;

(3)判定函数在某个区间上的单调性的方法步骤有两种主要方法:
1)定义法
a.设x1、x2∈给定区间,且x1<x2.

b.计算f(x1)- f(x2)至最简。

c.判断上述差的符号。
2)求导法
利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是增函数,导函数值小于0,说明是减函数,前提是原函数必须是连续的。

阅读全文

与奇偶性特征计算法相关的资料

热点内容
怎么用反诈中心app查询电话 浏览:708
linuxvi操作 浏览:296
什么是实木压缩板 浏览:639
加密空投与硬分叉指南 浏览:15
加密wps文档密码忘了怎么办 浏览:685
冲程算法 浏览:988
鸡料与鸡粪的算法 浏览:833
phpif变量为空值 浏览:59
iot编译器异常 浏览:600
代理服务器被禁用怎么上网 浏览:411
隐私加密怎么设置密码 浏览:940
马丁靴补色解压 浏览:565
在设置app上怎么找到个人热点 浏览:754
按照档案号生成文件夹 浏览:1001
程序员转方向 浏览:111
lol敏捷加密 浏览:882
传统公司眼中的加密货币 浏览:430
电脑图标又出现文件夹怎么去掉 浏览:964
排序算法c和a 浏览:418
手机拍照上传android 浏览:343