Ⅰ 动作分析算法有什么
在市面上,vioovi的ECRS工时分析软件是比较好的,很多各大中型企业都会使用,运用的是ECRS分析法,是工业工程学中程序分析的四大原则,用于对生产工序进行优化,以减少不必要的工序,达到更高的生产效率,这还是一个综合性软件,包括:IE软件、IE改善软件、工业工程软件、作业改善/业务改善软件、标准工时计算软件等全部功能,是真的非常好用。
Ⅱ 机器学习算法和深度学习的区别
一、指代不同
1、机器学习算法:是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
2、深度学习:是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标人工智能。
二、学习过程不同
1、机器学习算法:学习系统的基本结构。环境向系统的学习部分提供某些信息,学习部分利用这些信息修改知识库,以增进系统执行部分完成任务的效能,执行部分根据知识库完成任务,同时把获得的信息反馈给学习部分。
2、深度学习:通过设计建立适量的神经元计算节点和多层运算层次结构,选择合适的输人层和输出层,通过网络的学习和调优,建立起从输入到输出的函数关系,虽然不能100%找到输入与输出的函数关系,但是可以尽可能的逼近现实的关联关系。
三、应用不同
1、机器学习算法::数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、语音和手写识别、战略游戏和机器人运用。
2、深度学习:计算机视觉、语音识别、自然语言处理等其他领域。
Ⅲ 算法的要素是什么算法的特征是什么
一、算法的要素包括:
1、数据对象的操作和操作:计算机可以执行的基本操作以指令的形式描述。
2、算法的控制结构:算法的功能结构不仅取决于所选的操作,还取决于操作之间的执行顺序。
二、算法的特征如下:
1、有穷性:算法的有穷性意味着算法在执行有限的步骤之后必须能够终止。
2、确切性:算法的每一步都必须确切定义。
3、输入项:一个算法有0个或多个输入来描述操作对象的初始条件。所谓的零输入是指由算法本身决定的初始条件。
4、输出项:一个算法有一个或多个输出来反映处理输入数据的结果。没有输出的算法毫无意义。
5、可行性:算法中执行的任何计算步骤都可以分解为基本的可执行操作步骤,即每个计算步骤都可以在有限的时间内完成。
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
描述算法的方法有多种,常用的有自然语言、结构化流程图、伪代码和PAD图等,其中最普遍的是流程图。
随着计算机的发展,算法在计算机方面已有广泛的发展及应用,如用随机森林算法,来进行头部姿势的估计,用遗传算法来解决弹药装载问题,信息加密算法在网络传输中的应用,并行算法在数据挖掘中的应用等。
Ⅳ 怎样学习计算机的算法
算法是计算机中比较深层次的理论,学习算法不但要有编程语言的基础,最重要的还要有深厚的数学功底,如果数学不行,将影响你的算法研究。学习算法,先从数据结构开始吧
Ⅳ 计算方法怎么学
结合自己学习算法时的一些经历来说,下面一句话要始终记得:
自己之前也是个技术渣,但好在是一直没放弃学习,一方面坚持看书听课学习理论,另一方面自己动手去写、去实践,积累了很多方法和心得,简单地说就是一定要做到看书、听课、做题相结合,缺一不可。
Ⅵ 各种RL算法
在现代RL空间中绘制精确的,无所不包的算法分类法真的很难,因为算法的模块性没有用树结构很好地表示。此外,为了使某些东西适合页面并且在介绍文章中可以合理地消化,我们必须省略相当多的更高级的材料(探索,转移学习,元学习等)。也就是说,我们的目标是:
1. 强调深度RL算法中最基本的设计选择,包括学习内容和学习方法,
2. 揭示这些选择中的权衡,
3. 并针对这些选择将一些突出的现代算法放入上下文中。
RL算法中最重要的分支点之一是 agent是否可以获得(或学习)环境模型的问题 。我们提到的环境模型,我们指的是一种预测状态转换和奖励的函数。
拥有模型的主要好处是, 它允许agent 通过提前思考,查看一系列可能的选择会发生什么,以及明确决定其选项 来进行规划 。然后, agent 可以将结果从提前计划中提取到学习策略中。这种方法的一个特别着名的例子是 AlphaZero 。当这种方法有效时,与没有模型的方法相比,它可以显着提高样本效率。
主要缺点是 agent通常无法获得环境的真实模型。 如果 agent 想要在这种情况下使用模型,它必须纯粹从经验中学习模型,这会产生一些挑战。最大的挑战是模型中的偏差可以被 agent 利用,从而导致 agent 在学习模型方面表现良好,但在真实环境中表现得次优(或非常可怕)。模型学习从根本上来说很难,所以即使是非常努力——愿意花费大量时间并对其进行计算——也无法获得回报。
使用模型的算法称为 基于模型 的方法,而不使用模型的算法称为 无模型 。虽然无模型方法放弃了使用模型的样本效率带来的潜在增益,但它们往往更容易实现和调整。截至撰写本简介(2018年9月)时,无模型方法比基于模型的方法更受欢迎,并且得到了更广泛的开发和测试。
RL算法中的另一个关键分支点是 要学习什么 的问题 。 通常可能的名单包括
1. 策略,无论是随机的还是确定的,
2. 动作值函数(Q函数),
3. 值函数,
4. 和/或环境模型。
使用无模型RL表示和训练agent有两种主要方法:
Policy Optimization - 策略优化. 此系列中的方法将策略明确表示为 。它们直接通过性能指标 上的梯度上升来优化参数 ,或者通过最大化 的局部近似来间接地优化参数 。此优化几乎总是以 on-policy 的方式运行,这意味着每个更新仅使用根据最新版本的策略执行时收集的数据。
策略优化通常还涉及学习on-policy值函数 的近似值 ,用于确定如何更新策略。策略优化方法的几个例子是:
1. A2C / A3C ,执行梯度上升以直接最大化性能,
2. 和 PPO ,其更新间接地最大化性能,通过最大化替代 目标函数 ,该函数给出保守估计 将由于更新而改变多少。
Q-Learning. 该系列中的方法学习最优动作值函数 的近似值 。通常,它们使用基于Bellman方程的目标函数。此优化几乎总是以 off-policy 的方式运行,这意味着每次更新都可以使用在训练期间的任何时间点收集的数据,无论agent在获取数据时如何选择探索环境。通过 和 之间的连接获得相应的策略:Q-learning agent所采取的动作由下式给出:
Q-learning方法的例子包括
1. DQN ,一个大规模推出DRL领域的经典之作,
2. 和 C51 ,一种学习回报分布的变体,其期望值为 。
Trade-offs Between Policy Optimization and Q-Learning.
策略优化方法的主要优势在于它们是原则性的,在这种意义上,你可以直接针对你想要的东西进行优化。这往往使它们稳定可靠。
相比之下,Q-learning方法仅通过训练 来满足自洽方程,间接优化agent性能。这种学习有很多失败模式,因此往往不太稳定 [1] 。但是,Q-learning方法的优势在于它们在工作时具有更高的样本效率,因为它们可以比策略优化技术更有效地重用数据。
Interpolating Between Policy Optimization and Q-Learning.
政策优化和Q学习并不矛盾(在某些情况下,事实证明,他们是 等价的 ),并且存在一系列存在于两个极端之间的算法。处在这一范围内的算法能够在任何一方的优势和劣势之间进行谨慎的权衡。 例子包括
1. DDPG 一种同时学习确定性策略和Q函数的算法,通过使用它们当中每一个来改进另一个,
2. 和 SAC ,一种使用随机策略,熵正则化和一些其他技巧来稳定学习并在标准基准上得分高于DDPG的变体。
[1] For more information about how and why Q-learning methods can fail, see 1) this classic paper by Tsitsiklis and van Roy , 2) the (much more recent) review by Szepesvari (in section 4.3.2), and 3) chapter 11 of Sutton and Barto , especially section 11.3 (on “the deadly triad” of function approximation, bootstrapping, and off-policy data, together causing instability in value-learning algorithms).
与无模型RL不同,基于模型的RL不存在少量易于定义的方法集群:使用模型有许多正交方法。我们举几个例子,但这个清单远非详尽无遗。 在每种情况下,可以给出或学习模型。
背景:纯粹的规划. 最基本的方法从未明确地表示策略,而是使用纯 模型 技术(如 模型预测控制 (MPC))来选择操作。在MPC中,每次agent观察环境时,它都会计算一个相对于模型最优的 规划 ,其中 规划 描述了在当前之后的某个固定时间窗口内采取的所有动作。 ( 规划 算法可以通过使用学习值函数来考虑超出视野的未来奖励。)然后,代理执行 规划 的第一个动作,并立即丢弃其余部分。它每次准备与环境交互时计算新 规划 ,以避免使用 规划 范围短于预期的 规划 中的动作。
MBMF 的工作探讨了MPC与深度RL的一些标准基准任务的学习环境模型。
专家迭代. 纯粹 规划 的直接后续涉及使用和学习策略 的明确表示。agent在模型中使用规划算法(如蒙特卡罗树搜索),通过从当前策略中抽样为该规划生成候选动作。规划算法产生的动作优于单独的策略产生的动作,因此它是相对于策略的“专家”。之后更新策略以生成更类似于规划算法输出的动作。
该 ExIt 算法使用这种方法来训练深层神经网络玩Hex。
AlphaZero 是这种方法的另一个例子。
无模型方法的数据增强. 使用无模型RL算法来训练策略或Q函数,但是要么1)在更新agent时增加虚构的实际经验,要么2) 仅 使用虚拟经验来更新agent。
请参阅 MBVE ,了解增加虚构实际体验的示例。
请参阅 世界模型 ,了解使用纯粹的虚拟经验训练agent的例子,他们称之为“在梦中训练”。
将规划循环嵌入到策略中。 另一种方法是将规划程序直接嵌入到作为子程序的策略中——以便完整规划成为策略的辅助信息 ——同时使用任何标准的无模型算法训练策略的输出。关键概念是,在此框架中,策略可以学习如何以及何时使用规划。这使得模型偏差不再成为问题,因为如果模型在某些状态下不适合规划,则策略可以简单地学会忽略它。
有关具有这种想象力的agent的例子,请参阅 I2A 。
[2]. A2C / A3C (Asynchronous Advantage Actor-Critic): Mnih et al, 2016
[3]. PPO (Proximal Policy Optimization): Schulman et al, 2017
[4]. TRPO (Trust Region Policy Optimization): Schulman et al, 2015
[5]. DDPG (Deep Deterministic Policy Gradient): Lillicrap et al, 2015
[6]. TD3 (Twin Delayed DDPG): Fujimoto et al, 2018
[7]. SAC (Soft Actor-Critic): Haarnoja et al, 2018
[8]. DQN (Deep Q-Networks): Mnih et al, 2013
[9]. C51 (Categorical 51-Atom DQN): Bellemare et al, 2017
[10]. QR-DQN (Quantile Regression DQN): Dabney et al, 2017
[11]. HER (Hindsight Experience Replay): Andrychowicz et al, 2017
[12]. World Models : Ha and Schmidhuber, 2018
[13]. I2A (Imagination-Augmented Agents): Weber et al, 2017
[14]. MBMF (Model-Based RL with Model-Free Fine-Tuning): Nagabandi et al, 2017
[15]. MBVE (Model-Based Value Expansion): Feinberg et al, 2018
[16]. AlphaZero : Silver et al, 2017
Ⅶ 算法该怎么学感觉好难
很多人都会说"学一样东西难",一开始我也觉得很大程度是因为每个人的智力水平等等不可改变的因素. 但是后来我发现,有一个东西也很能决定一个人是否会觉得一样东西难学,那就是理解方式.
一件事物通过不同的途径让一个人理解效果差异是很大的.就比如说数学里面教你一个圆,有的人看到一个圆就能很快明白什么是圆,有的人却非得看到x^2+y^2 = r^2这种式子才有感觉,甚至有的人需要"到定点距离为定长的点集"这种描述才能理解. 那这个不一定是说谁的智力水平更高,而是因为他们对不同形式事物的敏感程度不同.
回到算法上来.算法本质是一种数学.他是抽象的操作集合.(看这么说你可能会觉得不知所云,但是如果我说他只是一种解决问题的办法可能就好理解). 所以很多书,论文,或者很多老师教的都是一种数学描述的算法,这样子的算法就我个人而言相当难理解,看了就想到代数高数什么的.. 但是如果找一个图文并茂的解释,或者找个人一步一步把一个算法给你我比划一下,我立刻就能理解. 说白了,就是你一定要找很多很多不同的角度来尝试接受一种东西,你一定可以找到一种你相当敏感的角度,用这个角度学习你就会游刃有余. 智力因素并没有太大影响的.
具体点说,你可以试试这几种不同的角度.
直接看数学形式的算法.我个人最无法接受的形式,但是有人很喜欢..例子就是算法导论上面那种描述.
听一般语言描述,最理想是找一个明白的人,给你用通俗语言讲讲原理.这个不错,很多我是这么理解的
图形理解,叫理解的人给你画插图,分布图,结构图等等,来分解一个算法,找到他的思路.说到图,有一个人的博客这方面做得很好:matrix67.
程序理解.找到一种算法的实现程序,对着程序理解,可以尝试分布运行,观察一下变量的变化,这样来理解算法.
实在太难的算法,可以边写边改来理解.当时我学习插头dp的时候就是这样,不论怎么总是一知半解,最后硬着头皮写了一遍,改了很久,但是改过了的时候,也就真的明白了是怎么回事了.
也许还有别的什么办法,因为人对事物的接受角度实在是太多了.多想想你平时学习什么比较容易,找出你最敏感的理解方式就行了.
有感而发说的一些东西,不一定都是正确的,只供参考,欢迎指正.
Ⅷ 初学者如何学算法
先看看两本书,一本数据结构,一本离散数学。。。看完以后你就会。。。。
Ⅸ 算法的概念
算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题,这里存在两个问题:一是与计算方法密切相关的算法问题;二是程序设计的技术问题。算法和程序之间存在密切的关系。
算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。
对算法的学习包括五个方面的内容:① 设计算法。算法设计工作是不可能完全自动化的,应学习了解已经被实践证明是有用的一些基本的算法设计方法,这些基本的设计方法不仅适用于计算机科学,而且适用于电气工程、运筹学等领域;② 表示算法。描述算法的方法有多种形式,例如自然语言和算法语言,各自有适用的环境和特点;③确认算法。算法确认的目的是使人们确信这一算法能够正确无误地工作,即该算法具有可计算性。正确的算法用计算机算法语言描述,构成计算机程序,计算机程序在计算机上运行,得到算法运算的结果;④ 分析算法。算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。分析算法可以预测这一算法适合在什么样的环境中有效地运行,对解决同一问题的不同算法的有效性作出比较;⑤ 验证算法。用计算机语言描述的算法是否可计算、有效合理,须对程序进行测试,测试程序的工作由调试和作时空分布图组成。
Ⅹ 算法到底应该怎么学
刷与不刷ACM ICPC的人在算法能力上会有巨大差距。
如果真想深入掌握各种算法,还是先刷题吧。刷到一定境界再去看更高级的算法书。
不得不承认现实生活中,一般码农工作对算法能力要求太低了,这一度让人们(包括我)认为算法似乎不那么重要。其实学习算法所锻炼出来的对各种问题敏感的反应和融会贯通能力还是非常重要的。
编程嘛,就是操作数据输出结果
算法和数据结构是配套的,你应该掌握的主要内容应该是:
这个问题用什么算法和数据结构能更快解决
这就要求你对常见的结构和算法了熟于心,你不一定要敲代码,用纸手写流程是更快的方式。
对你不懂的数据结构,你要去搜它主要拿来干嘛的,使用场景是什么。
细节出错是你对编程语言不熟悉才会导致的问题,跟你懂不懂算法没关系,这个你应该多写写练手小程序,背代码是很愚蠢的行为。
其实我觉得你这么迷茫不如实现一下stl的函数好了
我的经验就是去模拟(当然模拟只限于基础的算法)。甚至是手动模拟,比如我之前学深搜,学递归,代码很简单,但是因为涉及到栈,而你的大脑短时间内存储的栈深度只有几层(临时变量越多你大脑能模拟的栈深度就越少),实际上你没办法用大脑去想。比如学习图的深搜,一开始我是不理解的,对递归没办法理解。后来我就在纸上模拟出来,建立好邻接表以后,按照代码步骤一步步纸笔来模拟,慢慢就知道了代码的工作过程。你学习快排也是,当然你背代码也能写出来,但是可能不理解,很快就忘了。《算法导论》书上就有比较细致的执行过程,你手动模拟下partition和quicksort的过程,一开始就用很简单的用例,把整个过程都手动执行一遍,慢慢就了解了。很多算法都有一个循环不变式,你代码如果逻辑正确并且能够维持循环不变式,一般写出来就是正确的。
建议找本《算法》或者《算法导论》这些教材,每学习一个算法就先大致浏览下, 然后细致分析每一步代码的执行过程(纸笔模拟或者代码单步调试),当确认你真正明白之后,尝试不看代码就靠对算法过程的了解和正确的逻辑去自己实现。
当然,我不认为你写出很多算法就是高手了,现在大部分高级语言不需要你重复造轮子,你造出来的质量也远逊于库中那些高手的代码,可以去学习他们代码的实现,比如看看stl源码。真正工程用到的代码与一般算法实现还是有很多改进的。
最重要的不是你会写这些算法了,而是学会了很多思想。比如二分的思想,递归的思想,分治的思想,动态规划,贪心等,以及现实中很多数据结构的抽象等。难的不是学会了算法,而是如何运用这些算法思想去解决问题。