⑴ 如何提高蚁群路由算法收敛速度
述了。
目前蚁群算法主要用在组合优化方面,基本蚁群算法的思路是这样的:
1.
在初始状态下,一群蚂蚁外出,此时没有信息素,那么各自会随机的选择一条路径。
2.
在下一个状态,每只蚂蚁到达了不同的点,从初始点到这些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路径上信息素的多少选择路线(selection),更倾向于选择信息素多的路径走(当然也有随机性)。
3.
又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信息素不同程度的挥发掉了(evaporation),而刚刚经过了蚂蚁的路线信息素增强(reinforcement)。然后又出动一批蚂蚁,重复第2个步骤。
每个状态到下一个状态的变化称为一次迭代,在迭代多次过后,就会有某一条路径上的信息素明显多于其它路径,这通常就是一条最优路径。
关键的部分在于步骤2和3:
步骤2中,每只蚂蚁都要作出选择,怎样选择呢?
selection过程用一个简单的函数实现:
蚂蚁选择某条路线的概率=该路线上的信息素÷所有可选择路线的信息素之和
假设蚂蚁在i点,p(i,j)表示下一次到达j点的概率,而τ(i,j)表示ij两点间的信息素,则:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可选路线的信息素之和∑τ(i)=0,即前面还没有蚂蚁来过,概率就是一个[0,1]上的随机值,即随机选择一条路线)
步骤3中,挥发和增强是算法的关键所在(也就是如何数学定义信息素的)
evaporation过程和reinforcement过程定义了一个挥发因子,是迭代次数k的一个函数
ρ(k)=1-lnk/ln(k+1)
最初设定每条路径的信息素τ(i,j,0)为相同的值
然后,第k+1次迭代时,信息素的多少
对于没有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),显然信息素减少了
有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|w|,w为所有点的集合
为什么各个函数要如此定义,这个问题很难解释清楚,这也是算法的精妙所在。如此定义信息素的挥发和增强,以及路径选择,根据马尔可夫过程(随机过程之一)能够推导出,在迭代了足够多次以后,算法能够收敛到最佳路径。
组合优化很有意思的,像禁忌搜索、模拟退火、蚁群算法、遗传算法、神经网络这些算法能够解决很多生活中的实际问题,楼主有空可以招本书看看。
⑵ 请教,采用蚁群算法求解TSP问题的oliver30最优路径
给你产考产考//蚁群算法关于简单的TSP问题求解//#include#include#include#include#include#defineM13//蚂蚁的数量#defineN144//城市的数量#defineR1000//迭代次数#defineIN1//初始化的信息素的量#defineMAX0x7fffffff//定义最大值structcoordinate{charcity[15];//城市名intx;//城市相对横坐标inty;//城市相对纵坐标}coords[N];doublegraph[N][N];//储存城市之间的距离的邻接矩阵,自己到自己记作MAXdoublephe[N][N];//每条路径上的信息素的量doubleadd[N][N];//代表相应路径上的信息素的增量doubleyita[N][N];//启发函数,yita[i][j]=1/graph[i][j]intvis[M][N];//标记已经走过的城市intmap[M][N];//map[K][N]记录第K只蚂蚁走的路线doublesolution[M];//记录某次循环中每只蚂蚁走的路线的距离intbestway[N];//记录最近的那条路线doublebestsolution=MAX;intNcMax;//代表迭代次数,理论上迭代次数越多所求的解更接近最优解,最具有说服力doublealpha,betra,rou,Q;voidInitialize();//信息初始化voidInputcoords(FILE*fp);//将文件中的坐标信息读入voidGreateGraph();//根据坐标信息建图doubleDistance(int*p);//计算蚂蚁所走的路线的总长度voidResult();//将结果保存到out.txt中voidInitialize(){alpha=2;betra=2;rou=0.7;Q=5000;NcMax=R;return;}voidInputcoords(FILE*fp){inti;intnumber;if(fp==NULL){printf("Sorry,thefileisnotexist\n");exit(1);}else{for(i=0;idrand)break;}vis[k][j]=1;//将走过的城市标记起来map[k][s]=j;//记录城市的顺序}s++;}memset(add,0,sizeof(add));for(k=0;k20)//设立一个上界,防止启发因子的作用被淹没phe[i][j]=20;}}memset(vis,0,sizeof(vis));memset(map,-1,sizeof(map));}Result();printf("Resultissavedinout.txt\n");return0;}
⑶ 蚁群算法的问题
蚂蚁究竟是怎么找到食物的呢?在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,大部分蚂蚁会沿着信息素很快找到食物的。但不排除会出现这样的情况:在最初的时候,一部分蚂蚁通过随机选择了同一条路径,随着这条路径上蚂蚁释放的信息素越来越多,更多的蚂蚁也选择这条路径,但这条路径并不是最优(即最短)的,所以,导致了迭代次数完成后,蚂蚁找到的不是最优解,而是次优解,这种情况下的结果可能对实际应用的意义就不大了。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。
⑷ 求教:蚁群算法选择最短路径问题
这个例子其实是当初数模比赛时用来完成碎片拼接的,但其所用到原理还是求解最短路径的原理。但这里的最短路径和数据结构中最短路径有一定的区别。在数据结构中,对于最短路径的求解常用的一般有Dijkstra算法与Floyd算法,但对于要求出一条经过所有的点的并且要求路径最短,这些算法还是有一定的局限性的。而蚁群算法则很好地满足了这些条件。话说回来,很想吐槽一下网络流传的一些蚁群算法的例子,当初学习这个时候,身边也没有相关的书籍,只好到网上找例子。网上关于这个算法源代码的常见的有2个版本,都是出自博客,但是在例子都代码是不完整的,缺失了一部分,但就是这样的例子,居然流传甚广,我很好奇那些转载这些源码的人是否真的有去学习过这些,去调试过。当然,我下面的例子也是无法直接编译通过的,因为涉及到图像读取处理等方面的东西,所以就只贴算法代码部分。但是对于这个问题蚁群算法有一个比较大的缺点,就是收敛很慢,不过对于数量小的路径,效果还是很好的。function bestqueue =aco1(nt,nc_max,m ,st, sd ,Alpha ,Beta ,Rho ,Q,gethead,getend)%参数解释:%nt 路径所经过的点的个数;%nc_max 迭代的次数;%m 蚂蚁的个数;%st 起点序号;%sd 终点序号;%Alpha 信息素系数;�ta 启发因子系数;%Rho 蒸发系数;% Q 信息量;%gethead getend 是用来求距离矩阵的,可根据实际情况修改
% nt = 209;%碎片个数full = zeros(nt,nt);tic;%初始化距离矩阵for i =1:nt for t = 1:nt if i ~= t full(i,t) = sum(abs(getend(:,i) - gethead(:,t))); else full(i,t) = inf; end endend% a =full(156,187)eta = 1./full;%启发因子,取距离的倒数% eta% e = eta(4,2)tau = ones(nt,nt);%信息素矩阵% tabu = zeros(nt,nt);%禁忌矩阵,取蚂蚁数量和碎片数量一致,以减少迭代次数nc =1;%初始化迭代次数;rbest=zeros(nc_max,nt);%各代最佳路线rbest(:,1) = (linspace(st,st,nc_max))';rbest(:,nt) =(linspace(sd,sd,nc_max))'; lbest=zeros(nc_max,1);%各代最佳路线的长度pathlen = 0;%临时记录每代最佳路线长度stime = 1;%记录代数进度for i = 1:nc_max % 代数循环 delta_tau=zeros(nt,nt);%初始化改变量 stime for t = 1:m % 对蚂蚁群体的循环, tabu=zeros(1,nt);%禁忌向量,标记已访问的碎片,初试值设为0,访问之后则变为1; viseted = zeros(1,nt);%记录已访问的元素的位置 tabu(st) = 1;%st为起点,在此表示为碎片矩阵的编号,因为已经将蚁群放在起点,故也应将禁忌向量和位置向量的状态进行修改 tabu(sd) =1;%同上 visited(nt) = sd ;%同上; visited(1) = st;%同上; ht = 0; for r = 2:nt-1 %记录了还没访问的图片编号 vp = 1;%visited指示量 pp = [];%置空的概率向量 jc = 0; %获取尚未访问的位置的向量。 wv = zeros( nt -2 - ht ); for k =1 : nt if tabu(k) == 0 jc = jc +1; wv(jc) = k; end end% a =(tau(visited(end),ju(3))^Alpha)*(eta(visited(end),ju(3))^Beta)% visited(end) %计算选择的概率 for k=1:length(wv) pp(k)=(tau(visited(vp),wv(k))^Alpha)*(eta(visited(vp),wv(k))^Beta);%下一张碎片的选择概率计算,p =(信息素^信息素系数)*(启发因子^启发因子系数) end pp=pp./(sum(pp));%归一化 pcum =cumsum(pp); psl = find(pcum >= rand);%轮盘赌法 to_visit= wv(psl(1)) ;%完成选点 tabu(to_visit) =1; visited(r) = to_visit; ht =ht +1;%已访问碎片个数变化 vp =vp+1; end %路径变化信息 %对单个蚂蚁的路径进行统计 sum1 =0; for pr = 1:nt -1 x = visited(pr); y = visited(pr+1) ; sum1 =sum1 + full(x,y); end% vcell{t} =visited;%元胞记录每个蚂蚁的路径,即碎片顺序;% msum(t) = sum1; %信息素变化; for ww=1:(nt-1) delta_tau(visited(ww),visited(ww+1))=delta_tau(visited(ww),visited(ww+1)) + Q/sum1; end% delta_tau(visited(end),visited(1))=delta_tau(visited(end),visited(1))+Q/(sum1/100);% if t == m & i == nc_max % bestqueue = visited% end if t == m bestqueue = visited end end tau=(1-Rho).*tau+delta_tau; %完成信息素的更新,找出现有的最新的最佳路径,即信息素最多的路径; stime =stime +1;end toc;
⑸ 蚂蚁灭火的论文应用了哪些科学方法科学原理
摘要 3.3改进算法描述改进算法的具体步骤如下:步骤1参数初始化。令迭代次数为nc,且初始nc=0,最大nc=NC;设定蚂蚁个数为m,将m个蚂蚁置于初始顶点上;令道路拓扑图上每条边(if)的初始化信息量t(1)=C,且初始时刻Ar(0)=0。步骤2将各蚂蚁的出发点置于当前解中。步骤3对每个蚂蚁k(i=1,2,…)按改进后的状态转移规则p(1)移至下一顶点,将顶点/置于当前解中。步骤4若所有蚂蚁的当前解集包含了终点,转到步骤5,否则转步骤3。
⑹ 求助Matlab蚁群算法求一般函数极值的算法
function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)
%% ---------------------------------------------------------------
% ACASP.m
% 蚁群算法动态寻路算法
% ChengAihua,PLA Information Engineering University,ZhengZhou,China
% Email:[email protected]
% All rights reserved
%% ---------------------------------------------------------------
% 输入参数列表
% G 地形图为01矩阵,如果为1表示障碍物
% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)
% K 迭代次数(指蚂蚁出动多少波)
% M 蚂蚁个数(每一波蚂蚁有多少个)
% S 起始点(最短路径的起始点)
% E 终止点(最短路径的目的点)
% Alpha 表征信息素重要程度的参数
% Beta 表征启发式因子重要程度的参数
% Rho 信息素蒸发系数
% Q 信息素增加强度系数
%
% 输出参数列表
% ROUTES 每一代的每一只蚂蚁的爬行路线
% PL 每一代的每一只蚂蚁的爬行路线长度
% Tau 输出动态修正过的信息素
%% --------------------变量初始化----------------------------------
%load
D=G2D(G);
N=size(D,1);%N表示问题的规模(象素个数)
MM=size(G,1);
a=1;%小方格象素的边长
Ex=a*(mod(E,MM)-0.5);%终止点横坐标
if Ex==-0.5
Ex=MM-0.5;
end
Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标
Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数
%下面构造启发式信息矩阵
for i=1:N
if ix==-0.5
ix=MM-0.5;
end
iy=a*(MM+0.5-ceil(i/MM));
if i~=E
Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
else
Eta(1,i)=100;
end
end
ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线
PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度
%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁--------------------
for k=1:K
disp(k);
for m=1:M
%% 第一步:状态初始化
W=S;%当前节点初始化为起始点
Path=S;%爬行路线初始化
PLkm=0;%爬行路线长度初始化
TABUkm=ones(1,N);%禁忌表初始化
TABUkm(S)=0;%已经在初始点了,因此要排除
DD=D;%邻接矩阵初始化
%% 第二步:下一步可以前往的节点
DW=DD(W,:);
DW1=find(DW
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同
while W~=E&&Len_LJD>=1
%% 第三步:转轮赌法选择下一步怎么走
PP=zeros(1,Len_LJD);
for i=1:Len_LJD
PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
end
PP=PP/(sum(PP));%建立概率分布
Pcum=cumsum(PP);
Select=find(Pcum>=rand);
%% 第四步:状态更新和记录
Path=[Path,to_visit];%路径增加
PLkm=PLkm+DD(W,to_visit);%路径长度增加
W=to_visit;%蚂蚁移到下一个节点
for kk=1:N
if TABUkm(kk)==0
DD(W,kk)=inf;
DD(kk,W)=inf;
end
end
TABUkm(W)=0;%已访问过的节点从禁忌表中删除
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
end
%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度
ROUTES{k,m}=Path;
if Path(end)==E
PL(k,m)=PLkm;
else
PL(k,m)=inf;
end
end
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
for m=1:M
if PL(k,m) ROUT=ROUTES{k,m};
TS=length(ROUT)-1;%跳数
PL_km=PL(k,m);
for s=1:TS
x=ROUT(s);
Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
end
end
end
Tau=(1-Rho).