导航:首页 > 源码编译 > 多线程算法视频

多线程算法视频

发布时间:2022-09-26 07:43:41

Ⅰ C#如何使用多线程做任务 但是做的是同一个任务 要求不能够做重复的!! 这个要怎么实现的

首先你需要将你的任务A拆分成N份(Yn),然后创建N个线程去处理Yn,最后将结果进行汇总计算。
例:
使用多线程处理1000W条数据,按照一定算法计算着1000W条数据的结果值。
根据我CPU的特性(4核8线程),我打算创建8个线程来处理。
将1000W数据分成8份,让每个线程单独处理1份数据,将结果保存。
当8个线程处理完毕后,对8个结果进行处理,得出最终结果值。

Ⅱ 算法和多线程哪个快为何

梨子和苹果哪个压称?

java多线程: 如何阻塞和继续线程运行 (转)

典型地,suspend() 和 resume() 被用在等待另一个线程产生的结果的情形:测试发现结果还没有产生后,让线程阻塞,另一个线程产生了结果后,调用 resume() 使其恢复。但suspend()方法很容易引起死锁问题,已经不推荐使用了。wait() 和 notify() 方法:两个方法配套使用,wait() 使得线程进入阻塞状态,它有两种形式,一种允许 指定以毫秒为单位的一段时间作为参数,另一种没有参数,前者当对应的 notify() 被调用或者超出指定时间时线程重新进入可执行状态,后者则必须对应的 notify() 被调用。 初看起来它们与 suspend() 和 resume() 方法对没有什么分别,但是事实上它们是截然不同的。区别的核心在于,前面叙述的所有方法,阻塞时都不会释放占用的锁(如果占用了的话),而这一对方法则相反。 上述的核心区别导致了一系列的细节上的区别。 首先,前面叙述的所有方法都隶属于 Thread 类,但是这一对却直接隶属于 Object 类,也就是说,所有对象都拥有这一对方法。初看起来这十分不可思议,但是实际上却是很自然的,因为这一对方法阻塞时要释放占用的锁,而锁是任何对象都具有的,调用任意对象的 wait() 方法导致线程阻塞,并且该对象上的锁被释放。而调用 任意对象的notify()方法则导致因调用该对象的 wait() 方法而阻塞的线程中随机选择的一个解除阻塞(但要等到获得锁后才真正可执行)。 其次,前面叙述的所有方法都可在任何位置调用,但是这一对方法却必须在 synchronized 方法或块中调用,理由也很简单,只有在 synchronized 方法或块中当前线程才占有锁,才有锁可以释放。同样的道理,调用这一对方法的对象上的锁必须为当前线程所拥有,这样才有锁可以释放。因此,这一对方法调用必须放置在这样的 synchronized 方法或块中,该方法或块的上锁对象就是调用这一对方法的对象。若不满足这一条件,则程序虽然仍能编译,但在运行时会出现IllegalMonitorStateException 异常。 wait() 和 notify() 方法的上述特性决定了它们经常和synchronized 方法或块一起使用,将它们和操作系统的进程间通信机制作一个比较就会发现它们的相似性:synchronized方法或块提供了类似于操作系统原语的功能,它们的执行不会受到多线程机制的干扰,而这一对方法则相当于 block 和wakeup 原语(这一对方法均声明为 synchronized)。它们的结合使得我们可以实现操作系统上一系列精妙的进程间通信的算法(如信号量算法),并用于解决各种复杂的线程间通信问题。 关于 wait() 和 notify() 方法最后再说明两点: 第一:调用 notify() 方法导致解除阻塞的线程是从因调用该对象的 wait() 方法而阻塞的线程中随机选取的,我们无法预料哪一个线程将会被选择,所以编程时要特别小心,避免因这种不确定性而产生问题。 第二:除了 notify(),还有一个方法 notifyAll() 也可起到类似作用,唯一的区别在于,调用 notifyAll() 方法将把因调用该对象的 wait() 方法而阻塞的所有线程一次性全部解除阻塞。当然,只有获得锁的那一个线程才能进入可执行状态。 谈到阻塞,就不能不谈一谈死锁,略一分析就能发现,suspend() 方法和不指定超时期限的 wait() 方法的调用都可能产生死锁。遗憾的是,Java 并不在语言级别上支持死锁的避免,我们在编程中必须小心地避免死锁。 以上我们对 Java 中实现线程阻塞的各种方法作了一番分析,我们重点分析了 wait() 和 notify() 方法,因为它们的功能最强大,使用也最灵活,但是这也导致了它们的效率较低,较容易出错。实际使用中我们应该灵活使用各种方法,以便更好地达到我们的目的。

Ⅳ C++多线程的临界区如何使用

从临界区使用上讲嵌套本身没有问题,函数直接调用应该发生在同一个线程内,同一个线程内部重复进入是没有阻塞问题的
但是这个问题隐含的逻辑是有重大意义的.在多线程条件下,算法的设计并不能随意进行,如果f1/f2不是函数调用而是跨线程使用,你首先要考虑这种嵌套使用的设计是否合理,而不是在不改变这种嵌套方式下寻求解决,很多时候这个是无解的.多线程设计算法往往需要设计师首先考虑调整算法避免出现你这种情况

python实现简单多线程任务队列

Python实现简单多线程任务队列
最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题。梯度下降算法的代码如下(伪代码):
defgradient_descent(): # the gradient descent code plotly.write(X, Y)
一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度。
一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好。 我不想用一个像 cerely(一种分布式任务队列)一样大而全的任务队列框架,因为框架对于我的这点需求来说太重了,并且我的绘图也并不需要 redis 来持久化数据。
那用什么办法解决呢?我在 python 中写了一个很小的任务队列,它可以在一个单独的线程中调用 plotly.write函数。下面是程序代码。
classTaskQueue(Queue.Queue):
首先我们继承 Queue.Queue 类。从 Queue.Queue 类可以继承 get 和 put 方法,以及队列的行为。
def__init__(self, num_workers=1): Queue.Queue.__init__(self) self.num_workers=num_workers self.start_workers()
初始化的时候,我们可以不用考虑工作线程的数量。
defadd_task(self, task,*args,**kwargs): args=argsor() kwargs=kwargsor{} self.put((task, args, kwargs))
我们把 task, args, kwargs 以元组的形式存储在队列中。*args 可以传递数量不等的参数,**kwargs 可以传递命名参数。
defstart_workers(self): foriinrange(self.num_workers): t=Thread(target=self.worker) t.daemon=True t.start()
我们为每个 worker 创建一个线程,然后在后台删除。
下面是 worker 函数的代码:
defworker(self): whileTrue: tupl=self.get() item, args, kwargs=self.get() item(*args,**kwargs) self.task_done()
worker 函数获取队列顶端的任务,并根据输入参数运行,除此之外,没有其他的功能。下面是队列的代码:
我们可以通过下面的代码测试:
defblokkah(*args,**kwargs): time.sleep(5) print“Blokkah mofo!” q=TaskQueue(num_workers=5) foriteminrange(1): q.add_task(blokkah) q.join()# wait for all the tasks to finish. print“Alldone!”
Blokkah 是我们要做的任务名称。队列已经缓存在内存中,并且没有执行很多任务。下面的步骤是把主队列当做单独的进程来运行,这样主程序退出以及执行数据库持久化时,队列任务不会停止运行。但是这个例子很好地展示了如何从一个很简单的小任务写成像工作队列这样复杂的程序。
defgradient_descent(): # the gradient descent code queue.add_task(plotly.write, x=X, y=Y)
修改之后,我的梯度下降算法工作效率似乎更高了。如果你很感兴趣的话,可以参考下面的代码。 classTaskQueue(Queue.Queue): def__init__(self, num_workers=1):Queue.Queue.__init__(self)self.num_workers=num_workersself.start_workers() defadd_task(self, task,*args,**kwargs):args=argsor()kwargs=kwargsor{}self.put((task, args, kwargs)) defstart_workers(self):foriinrange(self.num_workers):t=Thread(target=self.worker)t.daemon=Truet.start() defworker(self):whileTrue:tupl=self.get()item, args, kwargs=self.get()item(*args,**kwargs)self.task_done() deftests():defblokkah(*args,**kwargs):time.sleep(5)print"Blokkah mofo!" q=TaskQueue(num_workers=5) foriteminrange(10):q.add_task(blokkah) q.join()# block until all tasks are doneprint"All done!" if__name__=="__main__":tests()

Ⅵ 串行的算法 能用多线程吗

串行的算法能用多线程。
在任务量不大的时候,串行化比多线程更快,在任务量大的时候多线程才比较有用。
正常情况下,用串行化就可以了,因为如果用多线程的话,它的优势不会显现出来,而且还比较浪费。

Ⅶ JAVA中实现多线程负载平衡算法

将请求放到一个全局的队列中去。每个子线程不断地从队列中取出请求并处理请求,如果队列中没有请求则子线程等待。

Ⅷ c++非阻塞多线程实例应用的算法有哪些

多线程非阻塞模式到现在算是告一段落吧 虽然还有一些小的bug需要修正 总结一下 准备向后面进发


实现功能: 本程序主要实现远程计算的功能 通过非阻塞套接字和多线程的结合 让通信变得高效 服务器通过维护一个客户端链表来实现对多个客户响应 客户端自身验证表达式的正确性 当输入Byebye时 服务器回复OK 此时客户端断开连接退出

总结:

不管用何种方式通信 相关联的几个线程总会用一个变量来控制所有的其他线程

对于非阻塞套接字 Recv Send Connect Accept等都需要套上一个基于共同控制变量或者永真的循环来实现对WSAEWOULDBLOCK的返回重试

对于通过事件信号量来通知的两个线程 例如生产者 消费者(生产者生产好了通过hEvent通知消费者) 当生产者退出时 一定要通过该信号量来通知消费者 以免消费者阻塞于WaitForSingleObject 而消费者在等到信号量时 也一定要检测生产者是否已经退出(或者是说在这里的断开了连接) 以免发送或接收未知的数据

对于有信号量控制的两个同步线程 要注意是否有共同访问的数据 要时刻记得对数据进行互斥访问

Ⅸ java中多线程如何互相操作

Java线程:线程的交互

SCJP5学习笔记

线程交互是比较复杂的问题,SCJP要求不很基础:给定一个场景,编写代码来恰当使用等待、通知和通知所有线程。

一、线程交互的基础知识

SCJP所要求的线程交互知识点需要从java.lang.Object的类的三个方法来学习:

void notify()
唤醒在此对象监视器上等待的单个线程。
void notifyAll()
唤醒在此对象监视器上等待的所有线程。
void wait()
导致当前的线程等待,直到其他线程调用此对象的 notify() 方法或 notifyAll() 方法。

当然,wait()还有另外两个重载方法:
void wait(long timeout)
导致当前的线程等待,直到其他线程调用此对象的 notify() 方法或 notifyAll() 方法,或者超过指定的时间量。
void wait(long timeout, int nanos)
导致当前的线程等待,直到其他线程调用此对象的 notify() 方法或 notifyAll() 方法,或者其他某个线程中断当前线程,或者已超过某个实际时间量。

以上这些方法是帮助线程传递线程关心的时间状态。

关于等待/通知,要记住的关键点是:
必须从同步环境内调用wait()、notify()、notifyAll()方法。线程不能调用对象上等待或通知的方法,除非它拥有那个对象的锁。
wait()、notify()、notifyAll()都是Object的实例方法。与每个对象具有锁一样,每个对象可以有一个线程列表,他们等待来自该信号(通知)。线程通过执行对象上的wait()方法获得这个等待列表。从那时候起,它不再执行任何其他指令,直到调用对象的notify()方法为止。如果多个线程在同一个对象上等待,则将只选择一个线程(不保证以何种顺序)继续执行。如果没有线程等待,则不采取任何特殊操作。

下面看个例子就明白了:
/**
* 计算输出其他线程锁计算的数据
*
* @author leimin 2008-9-15 13:20:38
*/
public class ThreadA {
public static void main(String[] args) {
ThreadB b = new ThreadB();
//启动计算线程
b.start();
//线程A拥有b对象上的锁。线程为了调用wait()或notify()方法,该线程必须是那个对象锁的拥有者
synchronized (b) {
try {
System.out.println("等待对象b完成计算。。。");
//当前线程A等待
b.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("b对象计算的总和是:" + b.total);
}
}
}

/**
* 计算1+2+3 ... +100的和
*
* @author leimin 2008-9-15 13:20:49
*/
public class ThreadB extends Thread {
int total;

public void run() {
synchronized (this) {
for (int i = 0; i < 101; i++) {
total += i;
}
//(完成计算了)唤醒在此对象监视器上等待的单个线程,在本例中线程A被唤醒
notify();
}
}
}

等待对象b完成计算。。。
b对象计算的总和是:5050

Process finished with exit code 0

千万注意:
当在对象上调用wait()方法时,执行该代码的线程立即放弃它在对象上的锁。然而调用notify()时,并不意味着这时线程会放弃其锁。如果线程荣然在完成同步代码,则线程在移出之前不会放弃锁。因此,只要调用notify()并不意味着这时该锁变得可用。

二、多个线程在等待一个对象锁时候使用notifyAll()

在多数情况下,最好通知等待某个对象的所有线程。如果这样做,可以在对象上使用notifyAll()让所有在此对象上等待的线程冲出等待区,返回到可运行状态。

下面给个例子:
/**
* 计算线程
*
* @author leimin 2008-9-20 11:15:46
*/
public class Calculator extends Thread {
int total;

public void run() {
synchronized (this) {
for (int i = 0; i < 101; i++) {
total += i;
}
}
//通知所有在此对象上等待的线程
notifyAll();
}
}

/**
* 获取计算结果并输出
*
* @author leimin 2008-9-20 11:15:22
*/
public class ReaderResult extends Thread {
Calculator c;

public ReaderResult(Calculator c) {
this.c = c;
}

public void run() {
synchronized (c) {
try {
System.out.println(Thread.currentThread() + "等待计算结果。。。");
c.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "计算结果为:" + c.total);
}
}

public static void main(String[] args) {
Calculator calculator = new Calculator();

//启动三个线程,分别获取计算结果
new ReaderResult(calculator).start();
new ReaderResult(calculator).start();
new ReaderResult(calculator).start();
//启动计算线程
calculator.start();
}
}

运行结果:
Thread[Thread-1,5,main]等待计算结果。。。
Thread[Thread-2,5,main]等待计算结果。。。
Thread[Thread-3,5,main]等待计算结果。。。
Exception in thread "Thread-0" java.lang.IllegalMonitorStateException: current thread not owner
at java.lang.Object.notifyAll(Native Method)
at threadtest.Calculator.run(Calculator.java:18)
Thread[Thread-1,5,main]计算结果为:5050
Thread[Thread-2,5,main]计算结果为:5050
Thread[Thread-3,5,main]计算结果为:5050

Process finished with exit code 0

运行结果表明,程序中有异常,并且多次运行结果可能有多种输出结果。这就是说明,这个多线程的交互程序还存在问题。究竟是出了什么问题,需要深入的分析和思考,下面将做具体分析。

实际上,上面这个代码中,我们期望的是读取结果的线程在计算线程调用notifyAll()之前等待即可。 但是,如果计算线程先执行,并在读取结果线程等待之前调用了notify()方法,那么又会发生什么呢?这种情况是可能发生的。因为无法保证线程的不同部分将按照什么顺序来执行。幸运的是当读取线程运行时,它只能马上进入等待状态----它没有做任何事情来检查等待的事件是否已经发生。 ----因此,如果计算线程已经调用了notifyAll()方法,那么它就不会再次调用notifyAll(),----并且等待的读取线程将永远保持等待。这当然是开发者所不愿意看到的问题。

因此,当等待的事件发生时,需要能够检查notifyAll()通知事件是否已经发生。

通常,解决上面问题的最佳方式是将

×××××××××××××××××××××××××××××
以上来自http://lavasoft.blog.51cto.com/62575/99157
这是一个系列线程的问题。。举例简单,但是很实用

阅读全文

与多线程算法视频相关的资料

热点内容
超声雾化器与压缩雾化器 浏览:641
模拟实现进程调度算法 浏览:386
现在的压缩包都是加密 浏览:329
施工员找工作去哪个app 浏览:630
安卓手机的游戏怎么打开 浏览:200
pdf扫描转文字 浏览:532
微机室里面的云服务器 浏览:108
excel能编程吗 浏览:931
android系统框架的介绍 浏览:947
无盘系统服务器如何配置 浏览:836
背负贷款如何缓解压力 浏览:82
linux获取日期时间 浏览:881
搬砖问题最合适的算法 浏览:446
小米安卓机密码忘记了如何解锁 浏览:910
产电plc编程手册 浏览:761
vscodephp 浏览:535
阿里云linux桌面 浏览:754
php二维数组搜索 浏览:116
ps快捷命令工具箱 浏览:253
c4d教程pdf 浏览:462