导航:首页 > 源码编译 > 变异率范围遗传算法

变异率范围遗传算法

发布时间:2022-09-26 20:00:37

Ⅰ 遗传算法是什么

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
遗传算法(Genetic Algorithms简称GA)是由美国Michigan大学的John Holland教授于20世纪60年代末创建的。它来源于达尔文的进化论和孟德尔、摩根的遗传学理论,通过模拟生物进化的机制来构造人工系统。遗传算法作为一种全局优化方法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对优化函数的要求很低并且对不同种类的问题具有很强的鲁棒性,所以广泛应用于计算机科学、工程技术和社会科学等领域。John Holland教授通过模拟生物进化过程设计了最初的遗传算法,我们称之为标准遗传算法。
标准遗传算法流程如下:
1)初始化遗传算法的群体,包括初始种群的产生以及对个体的编码。
2)计算种群中每个个体的适应度,个体的适应度反映了其优劣程度。
3)通过选择操作选出一些个体,这些个体就是母代个体,用来繁殖子代。
4)选出的母代个体两两配对,按照一定的交叉概率来进行交叉,产生子代个体。
5)按照一定的变异概率,对产生的子代个体进行变异操作。
6)将完成交叉、变异操作的子代个体,替代种群中某些个体,达到更新种群的目的。
7)再次计算种群的适应度,找出当前的最优个体。
8)判断是否满足终止条件,不满足则返回第3)步继续迭代,满足则退出迭代过程,第7)步中得到的当前最优个体,通过解码,就作为本次算法的近似最优解。

具体你可以到网络文库去搜索遗传算法相关的论文,很多的。
你也可以参考网络里对遗传算法的介绍。

Ⅱ 遗传算法,交叉概率,和变异概率,选择,通常在多少值,合适

这几个操作的概率是相互独立的,并不要求和为1。
选择操作中的概率,以轮赌法为例,概率只反映了个体被选择到的可能性,与个体的适应度大小有关,一般是适应度越大,对应轮赌法中的概率值越大。
交叉操作中的概率是用于判定两个个体是否进行交叉操作,一般都会大于0.9。
变异操作的概率是允许少数个体存在变异情况,以避免限入局部最优解,其值一般都在0.1以下。

Ⅲ MATLAB遗传算法

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值

flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体

for i=1:sizepop

% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;

clc
clear all
% warning off

%% 遗传算法参数
maxgen=50; %进化代数
sizepop=100; %种群规模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %变异概率
lenchrom=[1 1]; %变量字串长度
bound=[-5 5;-5 5]; %变量范围

%% 个体初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %种群结构体
avgfitness=[]; %种群平均适应度
bestfitness=[]; %种群最佳适应度
bestchrom=[]; %适应度最好染色体
% 初始化种群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 这个是我的测试函数
% 如果有这个函数的话,可以得到最优值

end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[];

%% 进化开始
for i=1:maxgen

% 选择操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;

end

%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束

%% 结果显示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函数值曲线 ' '终止代数=' num2str(maxgen)],'fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('函数值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函数值 变量');
% 窗口显示
disp([bestfitness x]);

Ⅳ 遗传算法<sup>[1,]</sup>

遗传算法,又称基因算法(Genetic Algorithm,简称GA),也是一种启发式蒙特卡洛优化算法。遗传算法最早是由Holland(1975)提出,它模拟了生物适者生存、优胜劣汰的进化过程,具有不依赖于初始模型的选择、不容易陷入局部极小、在反演过程中不用计算偏导数矩阵等优点。遗传算法最早由Stoffa和Sen(1991)用于地震波的一维反演,之后在地球物理资料的非线性反演中得到广泛的应用。GA算法对模型群体进行追踪、搜索,即模型状态通过模型群体传送,具有比模拟退火法更大、更复杂的“记忆”,潜力更大。

遗传算法在反演中的基本思路和过程是:

(1)将生物体看成模型,模型参数看成染色体,有多少个模型的参数就有多少个染色体。对每个模型的参数(染色体)用二进制进行编码,这个编码就是基因。

(2)随机生成一个模型群体(相当于生物的种群),然后在模型群体中进行繁殖,通过母本的选择、交换和变异等遗传操作产生下一代,然后保留较好基因,淘汰较差基因。

(3)通过一代一代的繁殖优胜劣汰的进化过程,最后所剩下的种群基本上都是最优的基因,种群趋于一致。所谓群体“一致”,即群体目标函数的方差或标准差很小,或者群体目标函数的均值接近于极值(可能是极大值或极小值),从而获得非线性反演问题所对应的最优解或近似最优解。

下面以一个实例来简述遗传算法的基本过程。

[例1]设m是正整数,且0≤m≤127,求方程φ(m)=m2的极大值。

这个例子极为简单,只有一个模型参数,因此只有一条染色体,目标函数的极值是极大值(此例子来自阮百尧课件)。遗传算法通过以下7个步骤来实现:

(1)模型参数二进制编码。

每个模型参数就是一条染色体,把十进制的模型参数表示为二进制,这就是基因。首先确定二进制码的长度(基因的长度):

2N=[mmax(i)-mmin(i)]/Δm(i) (8.20)

其中:N为第i条染色体基因的长度(也就是第i个模型参数的二进制码位数);[mmin(i),mmax(i)]为第i个模型参数的取值范围;Δm(i)为第i个模型参数的分辨率。这样就把模型参数离散化了,它只能按Δm(i)的整数倍变化。基因的长度按下式计算:

地球物理反演教程

其中:c为实数;N为基因长度,是整数;int[ ]为取整函数。上式表示如果c不是整数,那么基因长度N就是对c取整后加1,这样保证最小分辨率。

基因的编码按下式进行:

地球物理反演教程

其中:式(8.22)是编码公式;k为基因编码的十进制数,是整数;int[ ]为取整函数。把k转化为二进制就是基因的编码。解码是按照式(8.23)进行的。首先把一个基因的二进制编码转化为十进制数k,然后按式(8.23)可以计算出第i个模型参数m(i)的十进制值。

例如:电阻率参数ρ(1),它的变化范围为10~5000Ω·m,分辨率为2Ω·m,设当前参数ρ(1)=133Ω·m,按式(8.21)计算得

c=11.28482,N=12

所以二进制基因长度为13位。

利用式(8.22)计算基因编码k的十进制数:

k=int[(133-10)/2]=61

把它转化为二进制数为:000000111101。所以ρ(1)=133 的二进制基因编码为:000000111101。

解码过程就是把二进制基因编码变为十进制数k后用式(8.23)计算:

ρ(1)=10+61×2=132(Ω·m)

注意:基因编码并不是直接把电阻率值变为二进制。此外,133这个值在基因里不会出现,因为分辨率是2,所以表示为最接近的132。

对于[例1]问题来说,选分辨率为1,0~127用二进制编码需7位。

(2)产生初始模型种群。

生物繁殖进化需要一定数量的生物体种群,因此遗传算法开始时需要一定数量的初始模型。为保证基因的多样性,随机产生大量的初始模型作为初始种群,按照上面的编码方式进行编码。个体在模型空间中应分布均匀,最好是模型空间各代表区域均有成员。初始模型群体大,有利于搜索,但太大会增加计算量。

为保证算法收敛,在初始模型群体中,有时候应增加各位都为0和都为1的成员。遗传算法就是在这个初始模型种群的基础上进行繁殖,进化求解的。

对于[例1]问题来说,模型空间是0~127个数字,这样初始种群最多具有128个个体。为了简单,随机选择4个个体作为初始种群。初始种群的编码、目标函数值见表8.1。

表8.1 初始种群编码表

(3)模型选择。

为了生成新一代模型,需要选择较优的个体进行配对。生物进化按照自然选择、优胜劣汰的准则进行。对应地,遗传算法按照一定的准则来选择母本(两个),然后进行配对繁殖下一代模型,这个选择称为模型选择。模型配对最基本的方法是随机采样,用各模型的目标函数值对所有模型目标函数的平均值的比值定义繁殖概率,即

地球物理反演教程

其中:p(mi)为繁殖概率;φ(mi)为第i个模型的目标函数;φAVG为目标函数的平均值。对于极小化问题来说,规定目标函数值高于平均值的不传代;对于极大化问题来说,反之即可。

就[例1]来说,要求目标函数取极大值,所以规定目标函数小于平均值的模型不传代,大于它的可以传代。对第一代,为了防止基因丢失,可先不舍去繁殖概率小的模型,让它与概率大的模型配对。如:本例中70与56配对,101与15配对产生子代,见表8.2。

表8.2 基因交换表

(4)基因交换。

将配对的两个亲本模型的部分染色体相互交换,其中交换点可随机选择,形成两个新的子代(见表8.2)。两个染色体遗传基因的交换过程是遗传算法的“繁殖”过程,是母本的重组过程。

为了使染色体的基因交换比较彻底,Stoffa等人提出了一个交换概率px来控制选择操作的效果。如果px的值较小,那么交换点的位置就比较靠低位,这时的交换操作基本是低位交换,交换前后模型的染色体变化不是太大。如果px的值较大,那么交换点的位置就比较靠高位,此时的交换操作可以在较大的染色体空间进行,交换前后模型数值变化可以很大。

在[例1]中:15、101和56、70作为母本通过交换繁殖出子代5、6、111、120。所选择的基因交换位置见表8.2。有下划线的,是要交换的基因位置。

(5)更新。

母本模型和子本模型如何选择保留一定数量作为新的母本,就是模型更新。不同的策略会导致不同的结果。一般而言,若产生的新一代模型较好,则选择新一代模型而淘汰上一代模型。否则,则必须根据一定的更新概率pu来选择上一代模型来取代新一代中某些较劣的模型。

经过更新以后,繁殖时对子代再进行优胜劣汰的选择。对于极大值问题,大于目标函数平均值的子代可以繁殖,小于目标函数平均值的子代不能繁殖。由于新的种群能繁殖的个体数量减小了,所以要多繁殖几次,维持种群个体的数量保持平衡。

在[例1]中,子代较好,所以完全淘汰上一代模型,完全用子代作为新的母本。选择子代目标函数最大的两个模型进行繁殖,分别是111、120。

(6)基因变异。

在新的配对好的母本中,按一定比例随机选择模型进行变异,变异操作就是模拟自然界中的环境因素,就是按比较小的变异概率pm将染色体某位或某几位的基因发生突变(即将0变为1或将1变为0)。

变异操作的作用是使原来的模型发生某些变化,从而成为新的个体。这样可使群体增加多样性。变异操作在遗传算法中也起着至关重要的作用。实际上,由于搜索空间的性质和初始模型群体的优劣,遗传算法搜索过程中往往会出现所谓的“早熟收敛”现象,即在进化过程中早期陷入局部解而中止进化。采用合适的变异策略可提高群体中个体的多样性,从而防止这种现象的出现,有助于模型跳出局部极值。表8.3为[例1]的基因变异繁殖表。

表8.3 基因变异繁殖表

在[例1]中,用111、120分别繁殖两次,形成4个子代,维持种群数量平衡。随机选择120进行变异,变异的位数也是随机的。这里把它的第2位进行变异,即从1变为0,繁殖后形成子代为:70、110、121、127。可以看出新的子代比初始种群要好得多,其中甚至已经出现了最优解。如果对于地球物理的极小值问题,我们可以预先设置一个拟合精度,只要在种群中出现一个达到拟合精度的模型就可以终止反演了。

(7)收敛。

重复(3)~(6)的步骤,模型群体经多次选择、交换、更新、变异后,种群个体数量大小不变,模型目标函数平均值趋于稳定,最后聚集在模型空间中一个小范围内,则找到了全局极值对应的解,使目标函数最大或最小的模型就是全局最优模型。

对于具有多解性的地球物理反演问题来说,通过这一步有可能找到满足拟合精度的多个模型,对于实际反演解释、推断具有较高的指导意义。

遗传算法中的各种概率包括交换概率px、变异概率pm以及更新概率pu,这些参数的选择与设定目前尚无统一的理论指导,多数都视具体问题而定。Stoffa等(1991)的研究表明,适中的交换概率(px≈0.6)、较小的变异概率(pm≈0.01)和较大的更新概率(pu≈0.9),遗传算法的性能较优。

与模拟退火反算法相同,遗传算法与传统的线性反演方法相比,该方法具有:不依赖初始模型的选择、能寻找全局最小点而不陷入局部极小、在反演过程中不用计算雅克比偏导数矩阵等优点。另外,遗传算法具有并行性,随着并行计算和集群式计算机技术的发展,该算法将会得到越来越广泛的研究与应用。

但是遗传算法作为类蒙特卡洛算法同样需要进行大量的正演计算,种群个体数量越大,繁衍代数越多,则计算量越大。所以和前面的最小二乘法相比,速度不是它的优势。

Ⅳ 谁给我解释下遗传算法中的交叉概率,变异概率和代沟

1、交叉概率用于判断两两个体是否需要交叉;变异概率用于判断任一个体是否需要变异。
2、在一次进化迭代中,交叉通常是采用两两互相不重复交叉的方式,即个体1和个体2,个体3和个体4...个体n-1和个体n,或者个体1和个体n/2,个体2和个体n/2+1...个体n/2-1和个体n。以第一种方式为例,对于个体1和个体2,产生一个[0,1]之间的随机数,如果该随机数小于交叉概率,则个体1和个体2进行交叉操作,否则继续产生随机数判断之后的两个个体。
当然也可以采用随机交叉的方式,这时的交叉次数不能确定。
3、两两个体之间的交叉操作有不同的交叉方式,即:如果采用十进制编码,会有不同的交叉公式;如果采用二进制编码,有单点交叉和多点交叉。

Ⅵ 关于遗传算法

遗传算法(Genetic Algorithm,简称GA)是美国 Michigan大学的 John Golland提出的一种建立在自然选择和群体遗传学机理基础上的随机、迭代、进化、具有广泛适用性的搜索方法。现在已被广泛用于学习、优化、自适应等问题中。图4-1 给出了 GA搜索过程的直观描述。图中曲线对应一个具有复杂搜索空间(多峰空间)的问题。纵坐标表示适应度函数(目标函数),其值越大相应的解越优。横坐标表示搜索点。显然,用解析方法求解该目标函数是困难的。采用 GA时,首先随机挑选若干个搜索点,然后分别从这些搜索点开始并行搜索。在搜索过程中,仅靠适应度来反复指导和执行 GA 搜索。在经过若干代的进化后,搜索点后都具有较高的适应度并接近最优解。

一个简单GA由复制、杂交和变异三个遗传算子组成:

图4-2 常规遗传算法流程图

Ⅶ 遗传算法交叉和变异概率怎么选择

第一种是定值,一般而言,交叉概率在0.9-0.97之间任取,变异概率在0.1-0.001之间任取;
第二种是自适应取,按交叉或变异个体的适应度值以及当代的平均适应度值计算,每代的个体都不一样,相关公式可以查资料得到.

Ⅷ 基本遗传算法介绍

遗传算法是群智能优化计算中应用最为广泛、最为成功、最具代表性的智能优化方法。它是以达尔文的生物进化论和孟德尔的遗传变异理论为基础,模拟生物进化过程和机制,产生的一种群体导向随机搜索技术和方法。

遗传算法的基本思想:首先根据待求解优化问题的目标函数构造一个适应度函数。然后,按照一定的规则生成经过基因编码的初始群体,对群体进行评价、遗传运算(交叉和变异)、选择等操作。经过多次进化,获得适应度最高的一个或几个最优个体作为问题的最优解。

编码是对问题的可行解的遗传表示,是影响算法执行效率的关键因素的之一。遗传算法中,一个解 称为个体或染色体(chromosome),染色体由被称为基因(gene)的离散单元组成,每个基因控制颜色体的一个或多个特性,通常采用固定长度的0-1二进制编码,每个解对应一个唯一的二进制编码串编码空间中的二进制位串称为基因型(genotype)。而实际所表示问题的解空间的对应点称为表现型(phenotype)。

种群由个体构成,每个个体的染色体对应优化问题的一个初始解。

适应度函数是评价种群中个体对环境适应能力的唯一确定性指标,体现出“适者生存,优胜劣汰”这一自然选择原则。

遗传算法在每次迭代过程中,在父代种群中采用某种选择策略选择出指定数目的哥特体提进行遗传操作。最常用的选择策略是正比选择(proportional selection)策略。

在 交叉算子中,通常由两个被称为父代(parent)的染色体组合,形成新的染色体,称为子代(offspring)。父代是在种群中根据个体适应度进行选择,因此适应度较高的染色体的基因更有可能被遗传到下一代 。通过在迭代过程中不断地应用交叉算子,使优良个体的基因得以在种群中频繁出现,最终使得整个种群收敛到一个最优解。

在染色体交叉之后产生的子代个体,其基因位可能以很小的概率发生转变,这个过程称为变异。变异是为了增强种群的多样性,将搜索跳出局部最优解。

遗传算法的停止准则一般采用设定最大迭代次数或适应值函数评估次数,也可以是规定的搜索精度。

已Holland的基本GA为例介绍算法等具体实现,具体的执行过程描述如下:

Step 1: 初始化 。随机生成含有 个个体的初始种群 ,每个个体经过编码对应着待求解优化问题的一个初始解。

Step 2: 计算适应值 。个体 ,由指定的适应度函数评价其适应环境的能力。不同的问题,适应度函数的构造方式也不同。对函数优化问题,通常取目标函数作为适应度函数。

Step 3: 选择 。根据某种策略从当前种群中选择出 个个体作为重新繁殖的下一代群体。选择的依据通常是个体的适应度的高低,适应度高的个体相比适应度低的个体为下一代贡献一个或多个后代的概率更大。选择过程提现了达尔文“适者生存”原则。

Step 4: 遗传操作 。在选出的 个个体中,以事件给定的杂交概率 任意选择出两个个体进行 交叉运算 ,产生两个新的个体,重复此过程直到所有要求杂交的个体杂交完毕。根据预先设定的变异概率 在 个个体中选择出若干个体,按一定的策略对选出的个体进行 变异运算

Step 5: 检验算法等停止条件 。若满足,则停止算法的执行,将最优个体的染色体进行解码得到所需要的最优解,否则转到 Step 2 继续进行迭代过程。

阅读全文

与变异率范围遗传算法相关的资料

热点内容
有部小说女主叫温暖 浏览:977
linux命令app 浏览:792
土方标高计算法 浏览:593
家教高级教程女演员叫什么 浏览:360
日本日本翻译汉语电影 浏览:491
言情动漫免费 浏览:40
安卓手机图像变黑白色了怎么办 浏览:279
linux查看用户和密码 浏览:976
穿书荒岛:女主把我奶上天小说 浏览:156
主角能看见别人气运的小说 浏览:577
求一个不用下载播放器的网址 浏览:686
免费在线国产小电影 浏览:544
尺度大的女同电影 浏览:371
纯爱高干生子的小说 浏览:879
linux开发服务端 浏览:962
不要VIP的电视网站 浏览:780
看欧美出轨的.看欧美出轨的女人 浏览:872
linuxsignal函数 浏览:248
你的名字 国语 下载 浏览:280
银河麒麟下编译qt源码 浏览:163