① 数据结构有哪些基本算法
数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科。
可以理解为:程序设计 = 数据结构 + 算法
数据结构算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。
1、输入:一个算法具有零个或者多个输出。以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。后面一句话翻译过来就是,如果一个算法本身给出了初始条件,那么可以没有输出。比如,打印一句话:NSLog(@"你最牛逼!");
2、输出:算法至少有一个输出。也就是说,算法一定要有输出。输出的形式可以是打印,也可以使返回一个值或者多个值等。也可以是显示某些提示。
3、有穷性:算法的执行步骤是有限的,算法的执行时间也是有限的。
4、确定性:算法的每个步骤都有确定的含义,不会出现二义性。
5、可行性:算法是可用的,也就是能够解决当前问题。
数据结果的基本算法有:
1、图搜索(广度优先、深度优先)深度优先特别重要
2、排序
3、动态规划
4、匹配算法和网络流算法
5、正则表达式和字符串匹配
6、三路划分-快速排序
7、合并排序(更具扩展性,复杂度类似快速排序)
8、DF/BF 搜索 (要知道使用场景)
9、Prim / Kruskal (最小生成树)
10、Dijkstra (最短路径算法)
11、选择算法
② 数据结构中有哪些基本算法
数据结构中最基本的算法有:查找、排序、快速排序,堆排序,归并排序,,二分搜索算法
等等。
1、用的最多也是最简单的数据结构是线性表。
2、有前途的又难数据结构是图 。
3、常用的80%算法是排序和查找。
③ 数据结构 排序算法
因为堆排序的性能不受时间的影响。
像这样的还有:简单选择排序、归并排序。
希望能帮到你~
④ 请问一下:有谁能总结数据结构中排序章内介绍各种算法的时间复杂度呀,很急。。。
1.插入排序:每次将一个待排的记录插入到前面的已经排好的队列中的适当位置。
①.直接插入排序
直接排序法在最好情况下(待排序列已按关键码有序),每趟排序只需作1次比较而不需要移动元素。所以n个元素比较次数为n-1,移动次数0。
最差的情况下(逆序),其中第i个元素必须和前面的元素进行比较i次,移动个数i+1,所以总共的比较次数 比较多,就不写出来了
总结:是一种稳定的排序方法,时间复杂度O(n^2),排序过程中只要一个辅助空间,所以空间复杂度O(1)
②.希尔排序
缩小增量排序,对直接插入排序的一种改进
分组插入方法。
总结:是一种不稳定的排序方法,时间复杂度O(n^1.25),空间复杂度O(1)
2.交换排序
①.冒泡排序
最好的情况下,就是正序,所以只要比较一次就行了,复杂度O(n)
最坏的情况下,就是逆序,要比较n^2次才行,复杂度O(n^2)
总结:稳定的排序方法,时间复杂度O(n^2),空间复杂度O(1),当待排序列有序时,效果比较好。
②.快速排序
通过一趟排序将待排的记录分割成独立的两部分,其中一部分记录的关键字均比另一个部分的关键字小,然后再分别对这两个部分记录继续进行排序,以达到整个序列有效。
总结:在所有同数量级O(nlogn)的排序方法中,快速排序是性能最好的一种方法,在待排序列无序时最好。算法的时间复杂度是O(nlogn),最坏的时间复杂度O(n^2),空间复杂度O(nlogn)
3.选择排序
①.直接选择排序
和序列的初始状态无关
总结:时间复杂度O(n^2),无论最好还是最坏
②.堆排序
直接选择排序的改进
总结:时间复杂度O(nlogn),无论在最好还是最坏情况下都是O(nlogn)
4.归并排序
总结:时间复杂度O(nlogn),空间复杂度O(n)
5.基数排序
按组成关键字的各个数位的值进行排序,是分配排序的一种。不需要进行排码值间的比较就能够进行排序。
总结:时间复杂度O(d(n+rd))
总总结:
n比较小的时候,适合 插入排序和选择排序
基本有序的时候,适合 直接插入排序和冒泡排序
n很大但是关键字的位数较少时,适合 链式基数排序
n很大的时候,适合 快速排序 堆排序 归并排序
无序的时候,适合 快速排序
稳定的排序:冒泡排序 插入排序 归并排序 基数排序
复杂度是O(nlogn):快速排序 堆排序 归并排序
辅助空间(大 次大):归并排序 快速排序
好坏情况一样:简单选择(n^2),堆排序(nlogn),归并排序(nlogn)
最好是O(n)的:插入排序 冒泡排序
⑤ 数据结构 java开发中常用的排序算法有哪些
排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。
主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序
一、冒泡(Bubble)排序
----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。
二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次扫描选择最小项
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。
三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。
四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。
五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low < high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。
七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j<=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1>kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kj>temp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。
堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;i<G.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。
⑥ 数据结构中比较各种排序算法 求详解 ,,,,,,,,,,
排序算法包括:插入排序、交换排序、选择排序以及合并排序。
其中插入排序包括直接插入排序和Shell排序,交换排序包括冒泡排序和分化交换排序,选择排序包括直接选择排序和堆排序。
这些排序算法中,直接插入排序、冒泡排序和直接选择排序这三种排序的算法平均时间复杂度是O(n的平方);分化交换排序、堆排序和合并排序这三种排序的算法平均时间复杂度是
⑦ 用数据结构(先阐述算法思想,然后写出算法) 写出对n个关键字实施直接插入排序的算法
#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 100
typedef int KeyType;
typedef int DataType;
typedef struct{
KeyType key;
//DataType data;
}SortItem,SqList[MAXSIZE];
int bubblesort(SqList L,int n);
int BiInsertSort(SqList L,int n);
int main()
{
int m,n,i,j,k;
SqList L;
scanf("%d",&n);
srand(0);
for(i=0;i<n;i++) L[i].key=rand()%1000;
k=BiInsertSort(L,n);
for(i=0;i<n;i++)
printf("\n\n%d",k);
system("pause");
return 0;
}
int bubblesort(SqList L,int n)
{
int i,j,over,count=0;
SortItem p;
for(i=0;i<n-1;i++)
{
over=1;
count++;
for(j=n-1;j>i;j--)
{
if( count++&&L[j].key<L[j-1].key)
{
p=L[j];
L[j]=L[j-1];
L[j-1]=p;
over=0;
count++;
}
}
if(over) break;
}
return count+1;
}
int BiInsertSort(SqList L,int n)
{
int i,j,low,upper,mid;
SortItem p;
for(i=1;i<n;i++)
{
p=L[i];
low=0;
upper=i-1;
while(low<=upper)
{
mid=(low+upper)/2;
if(p.key<L[mid].key) upper=mid-1;
else low=mid+1;
}
for(j=i-1;j>=low;j--) L[j+1]=L[j];
L[low]=p;
}
return 0;
}
⑧ 数据结构的排序算法中,哪些排序是稳定的,哪些排序是不稳定的
一、稳定排序算法
1、冒泡排序
2、鸡尾酒排序
3、插入排序
4、桶排序
5、计数排序
6、合并排序
7、基数排序
8、二叉排序树排序
二、不稳定排序算法
1、选择排序
2、希尔排序
3、组合排序
4、堆排序
5、平滑排序
6、快速排序
排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。
做这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
(8)数据结构插入排序算法扩展阅读:
排序算法的分类:
1、通过时间复杂度分类
计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。
一般而言,好的性能是 O(nlogn),且坏的性能是 O(n^2)。对于一个排序理想的性能是 O(n)。
而仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要 O(nlogn)。
2、通过空间复杂度分类
存储器使用量(空间复杂度)(以及其他电脑资源的使用)
3、通过稳定性分类
稳定的排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
⑨ 数据结构中哪种排序方式效率最好
简单排序的算法(直接插入,冒泡,简单选择排序)简单且稳定,适合与待排记录较小的情况,当当待排序的关键码序列已经基本有序时,用直接插入排序最快。
就平均时间的性能而言,快速排序最佳,即排序速度最快,所以在随机情况下,快速排序是最佳选择。一般情况下,快速排序效率最好。
既要节省空间,又要有较快的排序速度,堆排序是最佳选择,其不足之处是建堆时需要消耗较多时间。
若希望排序是稳定的,且有较快的排序速度,则可选用2路归并排序,其缺点需要较大的辅助空间分配。