1. 请描述哈夫曼算法,并用图描述构造哈夫曼树的过程。
1. 根据给定的n个权值{w1,w2,…wn}构成n棵二叉树的集合F={T1,T2,..,Tn},其中每棵二叉树Ti中只有一个带权wi的根结点,左右子树均空。
2. 在F中选择两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为其左右子树上根结点的权值之和。
3. 在F中删除这两棵树,并将新的二叉树加入F中。
4. 重复前两步(2和3),直到F中只含有一棵树为止。该树即为哈夫曼树
帮你贴过来了,网络
这东西实际用法是可以减少树的访问次数,因为他把频率高的点放在比较靠近根节点的地方,频率低的在下面,这样访问速度快。举个例子,比如四个点,他们的使用频率分别是1,2,3,4,然后构成的树就是
4
0 3
0 2
0 1
补:打不出树形结构...
2. 哈夫曼树&带权路径计算
——即最短带权路径二叉树,即最优二叉树。将树的节点值升序排序,由叶至根构建二叉树,每次选两个最小的节点连接,加法得到其父节点值。最终根节点权为0,向叶子节点依次递增1。
eg:w={1,4,9,16,25,36,49,64,81,100}
最终哈夫曼树:
最终带权路径长度:
WPL=2*100+2*81+3*64+3*36+3*49+4*25+5*16+6*9+7*1+7*4=1078
3. 哈夫曼树算法
题目的阐述:以N进制编码方式对一个英文字串中的字符进行编码,每个不同的字符其编码不同.使得由新的编码替代原串后总码长最小,且输入0,1,2,...,N-1构成的数字串后,依照该编码方式可以正确的对译出唯一的英文原串.如:N=3英文原串为ABBCBADDACE其对应的一种编码方式为A:00B:01C:020D:021E:022原串对译后的编码为000101020010002102100020022其码长为27若输入编码串0102002200则对应的英文原串为BCEA 分析: 假设英文原串中的字符存放于字符集S中,‖S‖=X,每个字符在字串中出现的概率为W[i],L[i]为字符i的编码长.依题意得,对S集合中的不同字符进行N进制编码后要求1)新字串的码长最短WPL=∑W[i]*L[i]
(i∈1..X)使得在WPL是所有编码方式中的最小值2)编码无二义性任意一字符编码都不为其它字符编码的前缀 此题以哈夫曼树来解答是非常适宜的.N为此哈夫曼树的分叉数,S字符集里的元素即为此N叉哈夫曼树的叶子,概率W[i]即为叶子结点的权重,从根结点到各叶子结点的路径长即为该叶子结点的编码长L[i].由哈夫曼树的思想可以知道哈夫曼树的建立是一步到位的贪心法,即权重越大的结点越靠近该树的根,这样,出现频率越大的字符其编码就越短.但具体应该怎样建立起此N叉哈夫曼树呢?我们首先以N=2为例:S={A,B,C,D}W=[3,1,2,1]首先从W中选出两个最小权,1,1,将其删去,并以2(即1+1)替代W=[3,2,2];再从新的W中取出两个最小权,2,2,将其删去,并以4(即2+2)替代W=[3,4];依此类推,直到W中只一个值时合并结束,此时W=[7]以上两两合并的过程即为二叉哈夫曼树的建立过程,每一次的合并即是将两棵子树归于一个根结点下,于是可以建立二叉树如下: m0åæ1mmA0åæ1mmC0åæ1mmBD MIN-WPL=3*1+1*3+2*2+1*3=13 从某一根结点出发走向其左子树标记为0,走向其右子树标记为1,则可以得到以下编码A,B,C,D对应的编码为A:0B:110C:10D:111
N=3时又是怎样一种情况呢?设S={A,B,C,D,E}W=[7,4,2,5,3}则按权重排序可得S={D,B,E,C,A}W=[7,5,4,3,2]那么此哈夫曼树的树形应为怎样呢?是以下的左图,还是右图,或是两者均不是mmåâæåæmmllmåæåæCAåælllllmADBEDåæ
lmBåællEC 显然,要带权路径长WPL最短,那么,此树的高度就应尽可能的小,由此可知将此树建成丰满N叉树是最合理的,于是我们尽量使树每一层都为N个分枝.对于这道题的情况,我们具体来分析.按照哈夫曼树的思想,首先从W中取出权最小的三个值,即2,3,4,并以9(2+3+4)来代替,得到新的W=[9,7,5];再将这三个值合并成9+7+5=21这个结点.于是得到三叉哈夫曼树如下:måâællmDBåâælllECAWPL=1*7+1*5+2*2+2*3+2*4=30以0..N-1依次标记每个根结点的N个分枝,则可以得到每个字符相对应的编码:A:22B:1C:21D:0E:20我们发现对于这种情况恰巧每层均为N个分枝,但事实上并非所有的N叉哈夫曼树都可得到每层N个分枝.例于当N=3,‖S‖=6时就不可能构成一棵每层都为三个分枝的三叉树.如何来处理这种情况呢?最简单的处理方式就是添加若干出现概率为0的空字符填补在N叉树的最下一层,这些权为0的虚结点并无实际意义但却非常方全便于这棵N叉树的建立.空字符的添加个数add的计算如下:Y=‖S‖mod(n-1)add=0(Y=1)add=1(Y=0)add=N-Y(Y>1) 虚结点的加入使得权重最小的N-add个字符构成了距根结点最远的分枝,使其它字符构成的N叉树保持了丰满的N叉结构.例:N=3S={A,B,C,D,E,F}W=[1,2,3,4,5,6}则y:=6mod(3-1)=0add=1于是构成N叉树如下:为虚结点¡åâællmFEåâællmDCåâæBAWPL=1*6+1*5+2*4+2*3+3*2+3*1+3*0=33对应编码为:A:221B:220C:21D:20E:1F:0
4. 请描述哈夫曼算法,并用图描述构造哈夫曼树的过程。
这个讲的相当清楚。
首先介绍什么是哈夫曼树。哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的带权路径长度记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。可以证明哈夫曼树的WPL是最小的。
哈夫曼在上世纪五十年代初就提出这种编码时,根据字符出现的概率来构造平均长度最短的编码。它是一种变长的编码。在编码中,若各码字长度严格按照码字所对应符号出现概率的大小的逆序排列,则编码的平均长度是最小的。(注:码字即为符号经哈夫曼编码后得到的编码,其长度是因符号出现的概率而不同,所以说哈夫曼编码是变长的编码。)
然而怎样构造一棵哈夫曼树呢?最具有一般规律的构造方法就是哈夫曼算法。一般的数据结构的书中都可以找到其描述:
一、对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算法,一般还要求以Ti的权值Wi的升序排列。)
二、在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。
三、从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。
四、重复二和三两步,直到集合F中只有一棵二叉树为止。
用C语言实现上述算法,可用静态的二叉树或动态的二叉树。若用动态的二叉树可用以下数据结构: struct tree{
float weight; /*权值*/
union{
char leaf; /*叶结点信息字符*/
struct tree *left; /*树的左结点*/
};
struct tree *right; /*树的右结点*/
};
struct forest{ /*F集合,以链表形式表示*/
struct tree *ti; /* F中的树*/
struct forest *next; /* 下一个结点*/
};
例:若字母A,B,Z,C出现的概率为:0.75,0.54,0.28,0.43;则相应的权值为:75,54,28,43。
构造好哈夫曼树后,就可根据哈夫曼树进行编码。例如:上面的字符根据其出现的概率作为权值构造一棵哈夫曼树后,经哈夫曼编码得到的对应的码值。只要使用同一棵哈夫曼树,就可把编码还原成原来那组字符。显然哈夫曼编码是前缀编码,即任一个字符的编码都不是另一个字符的编码的前缀,否则,编码就不能进行翻译。例如:a,b,c,d的编码为:0,10,101,11,对于编码串:1010就可翻译为bb或ca,因为b的编码是c的编码的前缀。刚才进行哈夫曼编码的规则是从根结点到叶结点(包含原信息)的路径,向左孩子前进编码为0,向右孩子前进编码为1,当然你也可以反过来规定。
这种编码方法是静态的哈夫曼编码,它对需要编码的数据进行两遍扫描:第一遍统计原数据中各字符出现的频率,利用得到的频率值创建哈夫曼树,并必须把树的信息保存起来,即把字符0-255(2^8=256)的频率值以2-4BYTES的长度顺序存储起来,(用4Bytes的长度存储频率值,频率值的表示范围为0--2^32-1,这已足够表示大文件中字符出现的频率了)以便解压时创建同样的哈夫曼树进行解压;第二遍则根据第一遍扫描得到的哈夫曼树进行编码,并把编码后得到的码字存储起来。 静态哈夫曼编码方法有一些缺点:一、对于过短的文件进行编码的意义不大,因为光以4BYTES的长度存储哈夫曼树的信息就需1024Bytes的存储空间;二、进行哈夫曼编码,存储编码信息时,若用与通讯网络,就会引起较大的延时;三、对较大的文件进行编码时,频繁的磁盘读写访问会降低数据编码的速度。
因此,后来有人提出了一种动态的哈夫曼编码方法。动态哈夫曼编码使用一棵动态变化的哈夫曼树,对第t+1个字符的编码是根据原始数据中前t个字符得到的哈夫曼树来进行的,编码和解码使用相同的初始哈夫曼树,每处理完一个字符,编码和解码使用相同的方法修改哈夫曼树,所以没有必要为解码而保存哈夫曼树的信息。编码和解码一个字符所需的时间与该字符的编码长度成正比,所以动态哈夫曼编码可实时进行。动态哈夫曼编码比静态哈夫曼编码复杂的多,有兴趣的读者可参考有关数据结构与算法的书籍。
前面提到的JPEG中用到了哈夫曼编码,并不是说JPEG就只用哈夫曼编码就可以了,而是一幅图片经过多个步骤后得到它的一列数值,对这些数值进行哈夫曼编码,以便存储或传输。哈夫曼编码方法比较易懂,大家可以根据它的编码方法,自己编写哈夫曼编码和解码的程序。
5. 哈夫曼树译码的算法思路,语言描述即可
你讲的是实现时的语言注释,还是他的实现过程
6. 数据结构求赫夫曼树的算法
#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{
unsigned int weight;
unsigned int parent,lchild,rchild;
}htnode,*huffmantree;
typedef char **huffmancode;
int min1(huffmantree t,int i)
{
int j,flag;
unsigned int k=UINT_MAX; // 取k为不小于可能的值(即unsigned int类型的最大值)
for(j = 1; j <= i; j++)
if(t[j].weight < k && t[j].parent == 0)
k = t[j].weight,flag = j;
t[flag].parent=1;
return flag;
}
// s1为最小的两个值中序号小的那个
void select(huffmantree t,int i,int *s1,int *s2)
{
int j;
*s1=min1(t,i);
*s2=min1(t,i);
if(*s1 > *s2)
{
j=*s1;
*s1=*s2;
*s2=j;
}
}
void huffmancoding(huffmantree *HT,huffmancode *HC,int *w,int n)
{
int m,i,s1,s2,start;
unsigned c,f;
huffmantree p;
char *cd;
if(n<=1)
return;
m=2*n-1;
*HT=(huffmantree)malloc((m+1)*sizeof(htnode));
for(p=*HT+1,i=1;i<=n;++i,++p,++w)
{
(*p).weight=*w;
(*p).parent=0;
(*p).lchild=0;
(*p).rchild=0;
}
for(;i<=m;++i,++p)
(*p).parent=0;
for(i=n+1;i<=m;++i)
{
select(*HT,i-1,&s1,&s2);
(*HT)[s1].parent=(*HT)[s2].parent=i;
(*HT)[i].lchild=s1;
(*HT)[i].rchild=s2;
(*HT)[i].weight=(*HT)[s1].weight+(*HT)[s2].weight;
}
*HC=(huffmancode)malloc((n+1)*sizeof(char*));
cd=(char*)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;i++)
{
start=n-1;
for(c=i,f=(*HT)[i].parent; f!=0; c=f,f=(*HT)[f].parent)
if((*HT)[f].lchild==c)
cd[--start]='0';
else
cd[--start]='1';
(*HC)[i]=(char*)malloc((n-start)*sizeof(char));
strcpy((*HC)[i],&cd[start]);
}
free(cd);
}
int main()
{
huffmantree HT;
huffmancode HC;
int *w,n,i;
printf("请输入权值的个数(>1):\n");
scanf("%d",&n);
w=(int*)malloc(n*sizeof(int));
printf("请依次输入%d个权值(整型):\n",n);
for(i=0;i<=n-1;i++)
scanf("%d",w+i);
huffmancoding(&HT,&HC,w,n);
for(i=1;i<=n;i++)
puts(HC[i]);
return 0;
}
不知道是不是你要的
7. 哈夫曼树算法
题目的阐述:以N进制编码方式对一个英文字串中的字符进行编码,每个不同的字符其编码不同.使得由新的编码替代原串后总码长最小,且输入0,1,2,...,N-1构成的数字串后,依照该编码方式可以正确的对译出唯一的英文原串.如:N=3英文原串为ABBCBADDACE其对应的一种编码方式为A:00B:01C:020D:021E:022原串对译后的编码为000101020010002102100020022其码长为27若输入编码串0102002200则对应的英文原串为BCEA 分析: 假设英文原串中的字符存放于字符集S中,‖S‖=X,每个字符在字串中出现的概率为W[i],L[i]为字符i的编码长.依题意得,对S集合中的不同字符进行N进制编码后要求1)新字串的码长最短WPL=∑W[i]*L[i] (i∈1..X)使得在WPL是所有编码方式中的最小值2)编码无二义性任意一字符编码都不为其它字符编码的前缀 此题以哈夫曼树来解答是非常适宜的.N为此哈夫曼树的分叉数,S字符集里的元素即为此N叉哈夫曼树的叶子,概率W[i]即为叶子结点的权重,从根结点到各叶子结点的路径长即为该叶子结点的编码长L[i].由哈夫曼树的思想可以知道哈夫曼树的建立是一步到位的贪心法,即权重越大的结点越靠近该树的根,这样,出现频率越大的字符其编码就越短.但具体应该怎样建立起此N叉哈夫曼树呢?我们首先以N=2为例:S={A,B,C,D}W=[3,1,2,1]首先从W中选出两个最小权,1,1,将其删去,并以2(即1+1)替代W=[3,2,2];再从新的W中取出两个最小权,2,2,将其删去,并以4(即2+2)替代W=[3,4];依此类推,直到W中只一个值时合并结束,此时W=[7]以上两两合并的过程即为二叉哈夫曼树的建立过程,每一次的合并即是将两棵子树归于一个根结点下,于是可以建立二叉树如下: m0�0�2�0�31mmA0�0�2�0�31mmC0�0�2�0�31mmBD MIN-WPL=3*1+1*3+2*2+1*3=13 从某一根结点出发走向其左子树标记为0,走向其右子树标记为1,则可以得到以下编码A,B,C,D对应的编码为A:0B:110C:10D:111 N=3时又是怎样一种情况呢?设S={A,B,C,D,E}W=[7,4,2,5,3}则按权重排序可得S={D,B,E,C,A}W=[7,5,4,3,2]那么此哈夫曼树的树形应为怎样呢?是以下的左图,还是右图,或是两者均不是mm�0�2�0�9�0�3�0�2�0�3mmllm�0�2�0�3�0�2�0�3CA�0�2�0�3lllllmADBED�0�2�0�3 lmB�0�2�0�3llEC 显然,要带权路径长WPL最短,那么,此树的高度就应尽可能的小,由此可知将此树建成丰满N叉树是最合理的,于是我们尽量使树每一层都为N个分枝.对于这道题的情况,我们具体来分析.按照哈夫曼树的思想,首先从W中取出权最小的三个值,即2,3,4,并以9(2+3+4)来代替,得到新的W=[9,7,5];再将这三个值合并成9+7+5=21这个结点.于是得到三叉哈夫曼树如下:m�0�2�0�9�0�3llmDB�0�2�0�9�0�3lllECAWPL=1*7+1*5+2*2+2*3+2*4=30以0..N-1依次标记每个根结点的N个分枝,则可以得到每个字符相对应的编码:A:22B:1C:21D:0E:20我们发现对于这种情况恰巧每层均为N个分枝,但事实上并非所有的N叉哈夫曼树都可得到每层N个分枝.例于当N=3,‖S‖=6时就不可能构成一棵每层都为三个分枝的三叉树.如何来处理这种情况呢?最简单的处理方式就是添加若干出现概率为0的空字符填补在N叉树的最下一层,这些权为0的虚结点并无实际意义但却非常方全便于这棵N叉树的建立.空字符的添加个数add的计算如下:Y=‖S‖mod(n-1)add=0(Y=1)add=1(Y=0)add=N-Y(Y>1) 虚结点的加入使得权重最小的N-add个字符构成了距根结点最远的分枝,使其它字符构成的N叉树保持了丰满的N叉结构.例:N=3S={A,B,C,D,E,F}W=[1,2,3,4,5,6}则y:=6mod(3-1)=0add=1于是构成N叉树如下:�0�2为虚结点�0�3�0�2�0�9�0�3llmFE�0�2�0�9�0�3llmDC�0�2�0�9�0�3BA�0�2WPL=1*6+1*5+2*4+2*3+3*2+3*1+3*0=33对应编码为:A:221B:220C:21D:20E:1F:0
8. 哈夫曼算法的概述
1.初始化: 根据给定的n个权值{w1,w2,…wn}构成n棵二叉树的集合F={T1,T2,..,Tn},其中每棵二叉树Ti中只有一个带权wi的根结点,左右子树均空。
2. 找最小树:在F中选择两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且至新的二叉树的根结点的权值为其左右子树上根结点的权值之和。
3. 删除与加入:在F中删除这两棵树,并将新的二叉树加入F中。
4. 判断:重复前两步(2和3),直到F中只含有一棵树为止。该树即为哈夫曼树
9. 哈夫曼树的构造算法
/*-------------------------------------------------------------------------
*Name:哈夫曼编码源代码。
*Date:2011.04.16
*Author:JeffreyHill+Jezze(解码部分)
*在Win-TC下测试通过
*实现过程:着先通过HuffmanTree()函数构造哈夫曼树,然后在主函数main()中
*自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在
*父结点左侧,则置码为0,若在右侧,则置码为1。最后输出生成的编码。
*------------------------------------------------------------------------*/
#include<stdio.h>
#include<stdlib.h>
#defineMAXBIT100
#defineMAXVALUE10000
#defineMAXLEAF30
#defineMAXNODEMAXLEAF*2-1
typedefstruct
{
intbit[MAXBIT];
intstart;
}HCodeType;/*编码结构体*/
typedefstruct
{
intweight;
intparent;
intlchild;
intrchild;
intvalue;
}HNodeType;/*结点结构体*/
/*构造一颗哈夫曼树*/
voidHuffmanTree(HNodeTypeHuffNode[MAXNODE],intn)
{
/*i、j:循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,
x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/
inti,j,m1,m2,x1,x2;
/*初始化存放哈夫曼树数组HuffNode[]中的结点*/
for(i=0;i<2*n-1;i++)
{
HuffNode[i].weight=0;//权值
HuffNode[i].parent=-1;
HuffNode[i].lchild=-1;
HuffNode[i].rchild=-1;
HuffNode[i].value=i;//实际值,可根据情况替换为字母
}/*endfor*/
/*输入n个叶子结点的权值*/
for(i=0;i<n;i++)
{
printf("Pleaseinputweightofleafnode%d: ",i);
scanf("%d",&HuffNode[i].weight);
}/*endfor*/
/*循环构造Huffman树*/
for(i=0;i<n-1;i++)
{
m1=m2=MAXVALUE;/*m1、m2中存放两个无父结点且结点权值最小的两个结点*/
x1=x2=0;
/*找出所有结点中权值最小、无父结点的两个结点,并合并之为一颗二叉树*/
for(j=0;j<n+i;j++)
{
if(HuffNode[j].weight<m1&&HuffNode[j].parent==-1)
{
m2=m1;
x2=x1;
m1=HuffNode[j].weight;
x1=j;
}
elseif(HuffNode[j].weight<m2&&HuffNode[j].parent==-1)
{
m2=HuffNode[j].weight;
x2=j;
}
}/*endfor*/
/*设置找到的两个子结点x1、x2的父结点信息*/
HuffNode[x1].parent=n+i;
HuffNode[x2].parent=n+i;
HuffNode[n+i].weight=HuffNode[x1].weight+HuffNode[x2].weight;
HuffNode[n+i].lchild=x1;
HuffNode[n+i].rchild=x2;
printf("x1.weightandx2.weightinround%d:%d,%d ",i+1,HuffNode[x1].weight,HuffNode[x2].weight);/*用于测试*/
printf(" ");
}/*endfor*/
/*for(i=0;i<n+2;i++)
{
printf("Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d ",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);
}*///测试
}/*endHuffmanTree*/
//解码
voiddecodeing(charstring[],HNodeTypeBuf[],intNum)
{
inti,tmp=0,code[1024];
intm=2*Num-1;
char*nump;
charnum[1024];
for(i=0;i<strlen(string);i++)
{
if(string[i]=='0')
num[i]=0;
else
num[i]=1;
}
i=0;
nump=&num[0];
while(nump<(&num[strlen(string)]))
{tmp=m-1;
while((Buf[tmp].lchild!=-1)&&(Buf[tmp].rchild!=-1))
{
if(*nump==0)
{
tmp=Buf[tmp].lchild;
}
elsetmp=Buf[tmp].rchild;
nump++;
}
printf("%d",Buf[tmp].value);
}
}
intmain(void)
{
HNodeTypeHuffNode[MAXNODE];/*定义一个结点结构体数组*/
HCodeTypeHuffCode[MAXLEAF],cd;/*定义一个编码结构体数组,同时定义一个临时变量来存放求解编码时的信息*/
inti,j,c,p,n;
charpp[100];
printf("Pleaseinputn: ");
scanf("%d",&n);
HuffmanTree(HuffNode,n);
for(i=0;i<n;i++)
{
cd.start=n-1;
c=i;
p=HuffNode[c].parent;
while(p!=-1)/*父结点存在*/
{
if(HuffNode[p].lchild==c)
cd.bit[cd.start]=0;
else
cd.bit[cd.start]=1;
cd.start--;/*求编码的低一位*/
c=p;
p=HuffNode[c].parent;/*设置下一循环条件*/
}/*endwhile*/
/*保存求出的每个叶结点的哈夫曼编码和编码的起始位*/
for(j=cd.start+1;j<n;j++)
{HuffCode[i].bit[j]=cd.bit[j];}
HuffCode[i].start=cd.start;
}/*endfor*/
/*输出已保存好的所有存在编码的哈夫曼编码*/
for(i=0;i<n;i++)
{
printf("%d'sHuffmancodeis:",i);
for(j=HuffCode[i].start+1;j<n;j++)
{
printf("%d",HuffCode[i].bit[j]);
}
printf("start:%d",HuffCode[i].start);
printf(" ");
}
/*for(i=0;i<n;i++){
for(j=0;j<n;j++)
{
printf("%d",HuffCode[i].bit[j]);
}
printf(" ");
}*/
printf("Decoding?PleaseEntercode: ");
scanf("%s",&pp);
decodeing(pp,HuffNode,n);
getch();
return0;
}
http://www.cnblogs.com/Jezze/archive/2011/12/23/2299884.html