导航:首页 > 源码编译 > 常用算法大全

常用算法大全

发布时间:2022-10-15 23:23:18

Ⅰ 常用的算法表示形式有哪些

算法的常用表示方法有三种:

1、使用自然语言描述算法;

2、使用流程图描述算法;

3、使用伪代码描述算法。

算法是指对解决方案的准确、完整的描述,是解决问题的一系列清晰的指令。该算法代表了描述解决问题的策略和机制的系统方式。也就是说,对于某个标准输入,可以在有限的时间内获得所需的输出。

如果一个算法有缺陷或不适合某个问题,执行该算法将无法解决该问题。不同的算法可能使用不同的时间、空间或效率来完成相同的任务。一个算法的优劣可以用空间复杂度和时间复杂度来衡量。

Ⅱ 小学数学简便计算公式

总结了小学数学的计算公式,及其灵活运用,简便计算技巧。

①加法

加法交换律:a+b=b+a;

加法结合律:a+b+c=a+(b+c)=(a+b)+c;

②减法

a-b=-(b-a)

a-b-c=a-(b+c)

减法有一个口诀:加括号,变符号。

③乘法

乘法交换律:a x b=b x a;

乘法结合律:a x b x c=a x (b x c);

乘法分配律:a x (b±c)=a x b±a x c;

小学数学试题中常考的一种题型-计算复杂数式。

经常就会用到乘法分配律,来提取公因数,简化计算。

【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19

分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。

7.19x1.36+3.13x2.81+1.77x7.19

=7.19x(1.36+1.77)+3.13x2.81

=7.19x3.13+3.13x2.81

=(7.19+2.81)x3.13

=10x3.13

=31.3

④除法

a÷b÷c=a÷(b x c)(b,c不等于0);

a x b÷c=a÷cxb(c不等于0);

以上公式是解四则运算题目的基本关系式。

灵活学习,灵活运用。

它们除了正着用,有时候还得会倒着用。

【例2】计算:47.9x6.6+529x0.34;

分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+52.9x3.4(3.4已经凑出来了)

=47.9x6.6+(47.9+5)x3.4

=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)

=47.9x(6.6+3.4)+17

=496

注意:例2题目中我们将乘法分配律倒着使用。

52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4

除此之外还用到了一个特别的公式。

529x0.34=529÷10x10x0.34

这个公式总结出来,即:

a x b=a÷c x c x b(c不等于0)

Ⅲ 孕产期计算方法大全

孕产期计算方法大全

孕产期计算方法大全,对于年轻准妈妈来说,如何准确的算出怀孕的时间和孕产期是一件很困惑的事情。因此一般是去问医生,不过再看了孕产期计算方法大全后,相信你自己能算出来。

孕产期计算方法大全1

孕产期时间的计算方法。对年轻女性来说,如何才可以准确的计算出怀孕的时间和孕产期是很困惑的事情。

专家介绍说从医学上来讲,以末次月经的第一天起计算预产期,其整个孕期共为280天,10个妊娠月(每个妊娠月为28天)。

孕产期时间的计算方法。对年轻女性来说,如何才可以准确的计算出怀孕的时间和孕产期是很困惑的事情。专家介绍说从医学上来讲,以末次月经的第一天起计算预产期,其整个孕期共为280天,10个妊娠月(每个妊娠月为28天)。

孕妇在妊娠38-42周内分娩,均为足月分娩。由于每位女性月经周期长短不一,所以推测的预产期与实际预产期有1-2周的出入也是正常的。

【预产期最主要的计算方法有以下几种】

一、根据B超检查推算

医生做B超时测得胎头双顶间径、头臀长度及股骨长度即可估算出胎龄,并推算出预产期(此方法大多作为医生B超检查诊断应用)。

二、根据基础体温曲线计算

将基础体温曲线的低温段的最后一天作为排卵日,从排卵日向后推算264-268天,或加38周。

三、根据末次月经计算

末次月经日期的月份加9或减3,为预产期月份数;天数加7,为预产期日。例如:

例一:某女士的末次月经是1999年3月13日,其预产期约为:1999年12月20日。

例二:某女士的末次月经是1999年5月28日,其预产期约为:2000年3月5日孕妇也可以从末次月经第一天起向后推算到第280天就是预产期。

四、从孕吐开始的时间推算

反应孕吐一般出现在怀孕6周末,就是末次月经后42天,由此向后推算至280天即为预产期。

五、根据胎动日期计算

如你记不清末次月经日期,可以依据胎动日期来进行推算。一般胎动开始于怀孕后的18-20周。计算方法为:初产妇是胎动日加20周;经产妇是胎动日加22周。

孕期计算时间的方法,通过这些介绍,你现在的心里是不是已经有数了呢。在此预祝各位准妈妈顺利产下自己的小宝宝,拥有幸福美满的家庭。

孕产期计算方法大全2

孕妇预产期计算

主要的计算方法有以下几种:根据末次月经计算:为预产期月份数;天数加

7,为预产期日。孕妇的预产期=末次月经+xxx天。

1、最后一次月经计算法:将最后一次月经来潮的月份减掉3(不足者加上9)或月份直接加9也可,日数加上

7,即为预产期。预产期是按末次月经算的:月份加9或减

3,日子加7。

其中以最后一次月经开始日计算预产期的方法最为常用。希望大家都学会准确的计算自己的月份,做到心里有数,信心百倍的迎接小baby!

求Excel计算孕妇分娩日期和生产时孕周的公式

足月妊娠是280天,即40周!!

4、超声波(B超)检测法:对于最后一次月经开始日不确定的人而言,这是较准确的方法。预产期的计算方法为:从末次月经第一天起,月份减去3或者加上

9,比如,某孕妇末次月经为2003年8月15日,那么她预产期的计算是(8-3)=5月份,(15+7)=22日,预产期应该是2004年5月22日。

孕妇和家属学会算预产期十分有必要,它可以让妈妈们充分做好物质上及心理上的准备,从容地分娩。最后一次来月经是2006年1月10日,那预产期就是2006年10月19日(套公式月=1+

9,日=10+7+2)利用怀孕日历来计算许多妇产科医院会有厂商印制的“预产期大圆盘”分送给孕妇。

怀孕后孕产期怎么算

均为足月分娩。根据B超检查推算:医生做B超时测得胎头双顶间径、头臀长度及股骨长度即可估算出胎龄,并推算出预产期(此方法大多作为医生B超检查诊断应用)。

例如:张女士的'末次月经是1999年3月13日,其预产期约为:1999年12月20日。李女士的末次月经是1999年5月28日,其预产期约为:2000年3月5日孕妇也可以从末次月经第一天起向后推算到第280天就是预产期。)

专家师表示:“此法相对只适用在有记录基础体温习惯的妇女;排卵日的寻找方式很简单,就是在基础体温曲线表上寻找最低温的那一天。计算方法为:初产妇是胎动日加20周;经产妇是胎动日加22周。

怎样计算预产期

根据基础体温曲线计算:将基础体温曲线的低温段的最后一天作为排卵日,或加38周。从孕吐开始的时间推算:反应孕吐一般出现在怀孕6周末,就是末次月经后42天,由此向后推算至280天即为预产期。

使用基础体温者知道排卵日,则可计算出受精日。另外,庄晓婷医师补充说:“是第几次生产也会影响胎动感觉的周数,通常初产妇的第一次感觉胎动在第20周;而经产妇则在第18周。

月分算法:从最后一次月经第一天算起,4个孕周28天为怀孕一个月,这是医学上的计算月份方法,很多时候看到准妈妈们搞不清楚自己的月份,

就是因为把怀孕月份标准和实际月份搞混了,经常和医生算得有出入。(另有较简单的尼格尔规则;月份≧4时,预产期=月份-

3,预产期=月份+

9,月经周期非28天者,则必须修正。

孕妇的孕产期怎么计算

你的预产期是:公历2012年1月29号,农历的正月初八!

3、由子宫大小推定:根据子宫底的高度测定怀孕周数。俗话说“十月怀胎一朝分娩”,就是指的这个意思。9个月+7天从最后一次月经算起,九个月在家一个礼拜就是预产期了,即40周!”

以超音波来计算若怀疑自己是否怀孕,最好的方法是尽快至妇产科检查,医院通常先行验尿,验孕棒若可清楚呈现二条线,通常已怀孕4周;

再辅以超音波检查,若已可照出“胚囊”,代表怀孕5周;若已可照出“心跳和胚胎”,那就表示已有7周妊娠了。

预产期的计算方法

孕期280天共十个月。其实就这么简单,28天算一个月,而不是30天或者31天。以基础体温表来计算=排卵日+280天(再按每月实际的天数去推算。由于可计算出胎囊大小与胎儿头至臀部的长度,

以及胎头两侧顶骨间径数值,据此值即可推算出怀孕周数与预产期。它的计算原理同月经周期算法,圆盘上通常会有二个明显的指针,只要调整好“最后月经第一天”指针,“预产期”自然会被指出。

由于每位女性月经周期长短不一,所以推测的预产期与实际预产期有1-2周的出入也是正常的。

预产期怎么算

【:em

25:】 【:em

25:】 【:em

25:】 足月妊娠是280天,即40周!)例如:最后一次来月经的第一天是2006年8月10日,那预产期就是2007年5月17日。例如:最后一次月经为3月5日开始,预产期则为当年12月12日。

2、以受精日计算:若知道受精日,从这天开始经过38周(266天)即为预产期。

预产期按农历还是阳历算

医学上规定,以末次月经的第一天起计算预产期,其整个孕期共为280天,10个妊娠月(每个妊娠月为28天)。

预产期是从末次月经首日开始算的,末次月经首日往后推280天,就是预产期。这比从最后一次月经开始日计算预产期的方法更精确。

【:em

25:】 【:em

25:】 【:em

25:】 以校正过最后一次月经来计算28天为月经周期=最后一次来月经的第一天+280天(再按每月实际的天数去推算。供参考。

9个月+7天从最后一次月经算起,九个月在家一个礼拜就是预产期了,怀孕期通常是280天。预产期根据孕妇的月经周期,排卵时间,胎儿的成熟度有差异,

一般地讲,月经周期不足一个月的妇女,临产日子多提前,月经周期超过一个月的孕妇,临产日子多推后。再依照周数来推算。

Ⅳ 常见的相似度度量算法




本文目录:




  定义在两个向量(两个点)上:点x和点y的欧式距离为:

  常利用欧几里得距离描述相似度时,需要取倒数归一化,sim = 1.0/(1.0+distance),利用numpy实现如下:

python实现欧式距离

  从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(City Block distance)。

  (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

  (2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼哈顿距离

   python实现曼哈顿距离:


  国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。

  (1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离

  (2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的切比雪夫距离

   python实现切比雪夫距离:


  闵氏距离不是一种距离,而是一组距离的定义。

  两个n维变量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

  其中p是一个变参数。

  当p=1时,就是曼哈顿距离

  当p=2时,就是欧氏距离

  当p→∞时,就是切比雪夫距离

  根据变参数的不同,闵氏距离可以表示一类的距离。

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150 190,体重范围是50 60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。

  简单说来,闵氏距离的缺点主要有两个:

  (1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。

  (2)没有考虑各个分量的分布(期望,方差等)可能是不同的。


  标准欧氏距离的定义

  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:

  而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是:

  标准化后的值 = ( 标准化前的值 - 分量的均值 ) /分量的标准差

  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。


  有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:

  而其中向量Xi与Xj之间的马氏距离定义为:

  若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

  也就是欧氏距离了。

  若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。

  马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。


  几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

  在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

  两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

  类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

  夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

python实现余弦相似度:


  两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

  应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

python实现汉明距离:


  两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。

  与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

  可将杰卡德相似系数用在衡量样本的相似度上。

  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

  p :样本A与B都是1的维度的个数

  q :样本A是1,样本B是0的维度的个数

  r :样本A是0,样本B是1的维度的个数

  s :样本A与B都是0的维度的个数

  这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

  而样本A与B的杰卡德距离表示为:


  皮尔逊相关系数即为相关系数 ( Correlation coefficient )与相关距离(Correlation distance)

  相关系数的定义

  相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。








1. 机器学习中的相似性度量

2. 推荐算法入门(1)相似度计算方法大全

3. Python Numpy计算各类距离

4. 皮尔逊积矩相关系数

Ⅳ 除法的简便算法怎么算

除法简算有三种:
1、连除可以交换除数位置,但被除数不能动,商不变:
2、连除可以把除数先乘起来再用被除数去除,商不变:
3、有除号和+/-可合并被除数。
给个好评呦!

Ⅵ 机器学习一般常用的算法有哪些

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。

一、线性回归

一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。

二、Logistic 回归

它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。

三、线性判别分析(LDA)

在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。

四、决策树

决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。

五、朴素贝叶斯

其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。

六、K近邻算法

K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。

七、Boosting 和 AdaBoost

首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。

八、学习向量量化算法(简称 LVQ)

学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

Ⅶ C语言算法有哪些 并举例和分析

算法大全(C,C++)
一、 数论算法

1.求两数的最大公约数
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

2.求两数的最小公倍数
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;

3.素数的求法
A.小范围内判断一个数是否为质数:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判断longint范围内的数是否为素数(包含求50000以内的素数表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}

二、图论算法

1.最小生成树

A.Prim算法:

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k加入生成树}
{生成树中增加一条新的边k到closest[k]}
{修正各点的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal算法:(贪心)

按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I}
p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
sort;
{对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.最短路径

A.标号法求解单源点最短路径:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1为源点}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {对每一个已计算出最短路径的点}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed算法求解所有顶点对之间的最短路径:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
for k:=1 to n do {枚举中间结点}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 算法:

var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
min:=maxint; u:=0; {u记录离1集合最近的结点}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.计算图的传递闭包

Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

4.无向图的连通分量

A.深度优先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {对结点I染色}
c[i]:=color;
dfs(I,color);
end;
end;

B 宽度优先(种子染色法)

5.关键路径

几个定义: 顶点1为源点,n为汇点。
a. 顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 边活动最早开始时间 Ee[I], 若边I由<j,k>表示,则Ee[I] = Ve[j];
d. 边活动最晚开始时间 El[I], 若边I由<j,k>表示,则El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,则活动j为关键活动,由关键活动组成的路径为关键路径。
求解方法:
a. 从源点起topsort,判断是否有回路并计算Ve;
b. 从汇点起topsort,求Vl;
c. 算Ee 和 El;

6.拓扑排序

找入度为0的点,删去与其相连的所有边,不断重复这一过程。
例 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.

7.回路问题

Euler回路(DFS)
定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点)

Hamilton回路
定义:经过图的每个顶点仅一次的回路。

一笔画
充要条件:图连通且奇点个数为0个或2个。

9.判断图中是否有负权回路 Bellman-ford 算法

x[I],y[I],t[I]分别表示第I条边的起点,终点和权。共n个结点和m条边。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚举每一条边}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10.第n最短路径问题

*第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。
*同理,第n最短路径可在求解第n-1最短路径的基础上求解。

三、背包问题

*部分背包问题可有贪心法求解:计算Pi/Wi
数据结构:
w[i]:第i个背包的重量;
p[i]:第i个背包的价值;

1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):

A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procere search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]为前n个物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大价值。
F[I,j] 为容量为I时取前j个背包所能获得的最大价值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }

C.求恰好装满的情况数。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重复背包

A求最多可放入的重量。
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
状态转移方程为
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大价值。
USACO 1.2 Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*实现:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好装满的情况数。
Ahoi2001 Problem2
求自然数n本质不同的质数和的表达式的数目。
思路一,生成每个质数的系数的排列,在一一测试,这是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此过程计算当前系数的计算结果,now为结果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系数}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,递归搜索效率较高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }

思路三:可使用动态规划求解
USACO1.2 money system
V个物品,背包容量为n,求放法总数。
转移方程:

Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {读入第一个物品的重量}
i:=0; {a[i]为背包容量为i时的放法总数}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值}
for i:=2 to v do
begin
read(now);
update; {动态更新}
end;
writeln(a[n]);

四、排序算法

A.快速排序:

procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {将当前序列在中间位置的数定义为中间数}
repeat
while a[i]<mid do inc(i); {在左半部分寻找比中间数大的数}
while a[j]>mid do dec(j);{在右半部分寻找比中间数小的数}
if i<=j then begin {若找到一组与排序目标不一致的数对则交换它们}
swap(a[i],a[j]);
inc(i);dec(j); {继续找}
end;
until i>j;
if l<j then qsort(l,j); {若未到两个数的边界,则递归搜索左右区间}
if i<r then qsort(i,r);
end;{sort}

B.插入排序:

思路:当前a[1]..a[i-1]已排好序了,现要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}

C.选择排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;

D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比较相邻元素的关系}
end;

E.堆排序:
procere sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]与a[k+1]中较大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {将根放在合适的位置}
end;

procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;

Ⅷ c语言(高分)

1.相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值.
比如阶乘函数:f(n)=n*f(n-1)
在f(3)的运算过程中,递归的数据流动过程如下:
f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6}
而递推如下:
f(0)-->f(1)-->f(2)-->f(3)
由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推.但是递归作为比较基础的算法,它的作用不能忽视.所以,在把握这两种算法的时候应该特别注意.
2.所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串行(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对于一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
希尔排序 O(n1.25)
3.索引查找是在索引表和主表(即线性表的索引存储结构)上进行的查找。索引查找的过程是:首先根据给定的索引值K1,在索引表上查找出索引值等于KI的索引项,以确定对应予表在主表中的开始位置和长度,然后再根据给定的关键字K2,茬对应的子表中查找出关键字等于K2的元素(结点)。对索引表或子表进行查找时,若表是顺序存储的有序表,则既可进行顺序查找,也可进行二分查找,否则只能进行顺序查找。
设数组A是具有mainlist类型的一个主表,数组B是具有inde)dist类型的在主表A 上建立的一个索引表,m为索引表B的实际长度,即所含的索引项的个数,KI和K2分别为给定待查找的索引值和关键字(当然它们的类型应分别为索引表中索引值域的类型和主表中关键字域在索引存储中,不仅便于查找单个元素,而且更便于查找一个子表中的全部元素。当需要对一个子袁中的全部元素依次处理时,只要从索引表中查找出该子表的开始位
置即可。由此开始位置可以依次取出该子表中的每一个元素,所以整个查找过程的时间复杂度为,若不是采用索引存储,而是采用顺序存储,即使把它组织成有序表而进行二分查找时,索引查找一个子表中的所有元素与二分查找一个子表中的所有元素相比。
若在主表中的每个子表后都预留有空闲位置,则索引存储也便于进行插入和删除运算,因为其运算过程只涉及到索引表和相应的子表,只需要对相应子表中的元素进行比较和移动,与其它任何子表无关,不像顺序表那样需涉及到整个表中的所有元素,即牵一发而动全身。
在线性表的索引存储结构上进行插入和删除运算的算法,也同查找算法类似,其过程为:首先根据待插入或删除元素的某个域(假定子表就是按照此域的值划分的)的值查找索引表,确定出对应的子表,然后再根据待插入或删除元素的关键字,在该子表中做插入或删除元素的操作。因为每个子表不是顺序存储,就是链接存储,所以对它们做插入或删除操作都是很简单的。
4.插入法排序
#define N 10
#include"stdio.h"
main()
{ int i,j,k,t,a[N];
clrscr();
printf("Please input %d numbers:\n",N);
for(i=0;i<N;i++)
scanf("%d",&a[i]);
for(i=1;i<N;i++)
{
for(j=0;j<i;j++)
{if(a[j]>a[i])
{t=a[i];
for(k=i;k>=j;k--)
a[k]=a[k-1];
a[j]=t;
}
}
}
printf("small to big order:\n");
for(i=0;i<N;i++)
printf("%-2d",a[i]);
printf("\n");
getch();
}

Ⅸ 简便计算100道及答案

300÷125÷8

=300÷(125×8)

=300÷1000

=0.3

396-96-172-28

=(396-96)-(172+28)

= 300-200

= 100

125*24

= 125*8*3

= 1000*3

= 3000

360÷24

=360÷6÷4

=60÷4

=15

240÷48

=240÷24÷2

=10÷2

=5

800÷32

=800÷8÷4

=100÷4

=25

27+456+73

=(27+73)+456

=100+456

=556

24÷4+56÷4

=(24+56)÷4

=80÷4

=20

2.5×0.7×0.8

=(2.5×0.8)×0.7

=60×0.7

=42

Ⅹ 24算法大全101072

(2*(7+10))-10
(2*(7+10))-10
(2-10)*(7-10)
(2*(10+7))-10
(2-10)*(7-10)
(2*(10+7))-10
(7-10)*(2-10)
((7+10)*2)-10
(7-10)*(2-10)
((7+10)*2)-10
(10-2)*(10-7)
((10+7)*2)-10
(10-7)*(10-2)
(10-2)*(10-7)
((10+7)*2)-10
(10-7)*(10-2)

阅读全文

与常用算法大全相关的资料

热点内容
android数据库下载 浏览:744
中午服务器崩溃怎么办 浏览:423
产品经理和程序员待遇 浏览:439
解忧程序员免费阅读 浏览:107
录像免压缩 浏览:504
总结所学过的简便算法 浏览:360
南昌哪些地方需要程序员 浏览:759
三台服务器配置IP地址 浏览:173
如何用命令方块连续对话 浏览:278
win7linux共享文件夹 浏览:304
命令符打开本地服务 浏览:599
android应用程序源码 浏览:703
安卓开发工程师简历怎么写 浏览:61
热水器水量服务器是什么意思 浏览:117
stk卫星编译 浏览:480
对后台程序员的要求 浏览:761
ios大文件夹图标 浏览:626
生的计划pdf 浏览:715
oppoa93加密便签在哪查找 浏览:21
两个数字的加减乘除运算编程 浏览:227