① 什么排序的速度(时间复杂度)最快
从时间复杂度看,所有内部排序方法可以分为两类。
1.插入排序 选择排序 起泡排序
其时间复杂度为O(n2);
2.堆排序 快速排序 归并排序
其时间复杂度为O(nlog2n)。
这是就平均情况而言的,如果从最好的情况考虑,
则插入排序和起泡排序的时间复杂度最好,为O(n),
而其他算法的最好情况同平均情况大致相同。
如果从最坏的情况考虑,快速排序的时间复杂度为O(n2),插入排序和起泡排序虽然同平均情况相同,但系数大约增加一倍,运行速度降低一半,而选择排序、堆排序和归并排序则影响不大。
总之,
在平均情况下,快速排序最快;
在最好情况下,插入排序和起泡排序最快;
在最坏情况下,堆排序和归并排序最快。
② 什么情况下使用快速排序比较快
在分区时两个子分区最平衡时。
因为两个子分区大小不可能同时大于n/2,所以一个分区大小为n/2的下界,另一个分区大小为n/2的上界加1时,快速排序的运行速度最快。
这时,表达其运行时间的递归式为
T(n) <= 2T(n/2) + O(n)
根据定理
T(n) =
if n = 1 , then O(n)
if n > 1, then 2T(n/2) + O(n)
的解为T(n) = O(nlgn)
由于在每一层递归上,划分的两边都是对称的。所以,从渐进意义上来看,算法运行得最快。
③ 希尔排序和快速排序哪个快
希尔排序时间复杂度是O(n^(1.3-2)),空间复杂度为常数阶O(1)。希尔排序没有时间复杂度为O(n(logn))的快速排序算法快 ,因此对中等大小规模表现良好,但对规模非常大的数据排序不是最优选择,总之比一般O(n^2 )复杂度的算法快得多。希尔排序(Shell Sort)是插入排序的一种,它是针对直接插入排序算法的改进。
概念及其介绍:
希尔排序又称缩小增量排序,因 DL.Shell 于 1959 年提出而得名。它通过比较相距一定间隔的元素来进行,各趟比较所用的距离随着算法的进行而减小,直到只比较相邻元素的最后一趟排序为止。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。
④ 快速排序算法
快速排序(Quicksort)是对冒泡排序的一种改进。
然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。
⑤ 快速排序算法
快速排序算法是冒泡排序算法的一种改进
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:
1、首先设定一个分界值,通过该分界值将数组分成左右两部分;
2、将大于等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边;
3、采用递归分别多左右集合进行排序;
4、当左右两部分数据都排序完成后,整个数组的排序就完成了
⑥ 在各类算法中那种算法排序是最快的
说句实话,没有最快这一说。
如果不在乎浪费空间,应该是桶排序最快
如果整体基本有序,插入排序最快
如果考虑综合情况,快速排序更加实用常见(希尔排序、堆排序等各种排序也各有优劣)
一般情况下,冒泡这种排序仅仅是名字起的有趣罢了,不太好用
⑦ 快速排序法
快速排序(Quicksort)是对冒泡排序的一种改进。[1]
快速排序由C. A. R. Hoare在1960年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。[1]
中文名
快速排序算法
外文名
quick sort
别名
快速排序
提出者
C. A. R. Hoare
提出时间
1960年
快速
导航
排序步骤
程序调用举例
示例代码
性能分析
排序流程
快速排序算法通过多次比较和交换来实现排序,其排序流程如下:[2]
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。[2]
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。[2]
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。[2]
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。[2]
排序步骤
原理
设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选
快排图
用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它左边,所有比它大的数都放到它右边,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。[1]
一趟快速排序的算法是:[1]
1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;[1]
2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];[1]
3)从j开始向前搜索,即由后开始向前搜索(j--),找到第一个小于key的值A[j],将A[j]和A[i]的值交换;[1]
4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]的值交换;[1]
5)重复第3、4步,直到i==j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。[1]
排序演示
假设一开始序列{xi}是:5,3,7,6,4,1,0,2,9,10,8。
此时,ref=5,i=1,j=11,从后往前找,第一个比5小的数是x8=2,因此序列为:2,3,7,6,4,1,0,5,9,10,8。
此时i=1,j=8,从前往后找,第一个比5大的数是x3=7,因此序列为:2,3,5,6,4,1,0,7,9,10,8。
此时,i=3,j=8,从第8位往前找,第一个比5小的数是x7=0,因此:2,3,0,6,4,1,5,7,9,10,8。
⑧ 快速排序方法在任何情况下均可以得到最快的排序效率,对吗
要排序的数据已基本有序的情况下。
快速排序的基本思想是以基准元素为中心,将待排序表分成两个子表,然后继续对子表进行划分,直到所有子表的长度为1。
快速排序第一趟的结果是:将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小。
(8)快速排序算法速度扩展阅读:
快速排序法性能分析:
快速排序的一次划分算法从两头交替搜索,直到low和high重合,因此其时间复杂度是O(n);而整个快速排序算法的时间复杂度与划分的趟数有关。
理想的情况是,每次划分所选择的中间数恰好将当前序列几乎等分,经过log2n趟划分,便可得到长度为1的子表。这样,整个算法的时间复杂度为O(nlog2n)。
⑨ 快速排序法 pascal
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是:
1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5)、重复第3、4步,直到I>j;
详细过程举例如下:
原序: [26 5 37 1 61 11 59 15 48 19]
一: [19 5 15 1 11] 26 [59 61 48 37]
二: [11 5 15 1] 19 26 [59 61 48 37]
三: [1 5] 11 [15] 19 26 [59 61 48 37]
四: 1 5 11 [15] 19 26 [59 61 48 37]
五: 1 5 11 15 19 26 [59 61 48 37]
六: 1 5 11 15 19 26 [37 48] 59 [61]
七: 1 5 11 15 19 26 37 48 59 [61]
八: 1 5 11 15 19 26 37 48 59 61
快速排序法是所有排序方法中速度最快、效率最高的方法。程序如下:
var a:array[0..10] of integer;
n:integer;
procere qsort(l,r:longint);{r,l表示集合的左右边界,即把第r到第l个数进行排序}
var i,j,m:longint;
begin
m:=a[l];{标准数}
i:=l; {I,J为指针}
j:=r;
repeat
while a[i]<m do inc(i);
while a[j]>m do dec(j);
if i<=j then begin
a[0]:=a[i];
a[i]:=a[j];
a[j]:=a[0];
inc(i);
dec(j);
end;
until i>j;
if l<j then qsort(l,j); {如果集合中不止一个数则进入下一层递归,l,J为新边界}
if i<rthen qsort(i,r); {如果集合中不止一个数则进入下一层递归,i,r为新边界}
end;
begin
for n:=1 to 10 do read(a[n]);
qsort(1,10);
for n:=1 to 10 do write(a[n]:4);
end.
⑩ 选择排序,快速排序,冒泡排序,堆排序,插入排序,基排序的程序的运行速度
分析如下:
冒泡排序:在最优情况下只需要经过n-1次比较即可得出结果,(这个最优情况那就是序列己是正序,从100K的正序结果可以看出结果正是如此),但在最坏情况下,即倒序(或一个较小值在最后),下沉算法将需要n(n-1)/2次比较。所以一般情况下,特别是在逆序时,它很不理想。它是对数据有序性非常敏感的排序算法。
冒泡排序2:它是冒泡排序的改良(一次下沉再一次上浮),最优情况和最坏情况与冒泡排序差不多,但是一般情况下它要好过冒泡排序,它一次下沉,再一次上浮,这样避免了因一个数的逆序,而造成巨大的比较。如(2,3,4,…,n-1,n,1),用冒泡排序需要n(n-1)/2次比较,而此排序只要3轮,共比较(n-1)+(n-2)+(n-3)次,第一轮1将上移一位,第二轮1将移到首位,第三轮将发现无数据交换,序列有序而结束。但它同样是一个对数据有序性非常敏感的排序算法,只适合于数据基本有序的排序。
快速排序:它同样是冒泡排序的改进,它通过一次交换能消除多个逆序,这样可以减少逆序时所消耗的扫描和数据交换次数。在最优情况下,它的排序时间复杂度为O(nlog2n)。即每次划分序列时,能均匀分成两个子串。但最差情况下它的时间复杂度将是O(n^2)。即每次划分子串时,一串为空,另一串为m-1(程序中的100K正序和逆序就正是这样,如果程序中采用每次取序列中部数据作为划分点,那将在正序和逆时达到最优)。从100K中正序的结果上看“快速排序”会比“冒泡排序”更慢,这主要是“冒泡排序”中采用了提前结束排序的方法。有的书上这解释“快速排序”,在理论上讲,如果每次能均匀划分序列,它将是最快的排序算法,因此称它作快速排序。虽然很难均匀划分序列,但就平均性能而言,它仍是基于关键字比较的内部排序算法中速度最快者。
直接选择排序:简单的选择排序,它的比较次数一定:n(n-1)/2。也因此无论在序列何种情况下,它都不会有优秀的表现(从上100K的正序和反序数据可以发现它耗时相差不多,相差的只是数据移动时间),可见对数据的有序性不敏感。它虽然比较次数多,但它的数据交换量却很少。所以我们将发现它在一般情况下将快于冒泡排序。
堆排序:由于它在直接选择排序的基础上利用了比较结果形成。效率提高很大。它完成排序的总比较次数为O(nlog2n)。它是对数据的有序性不敏感的一种算法。但堆排序将需要做两个步骤:-是建堆,二是排序(调整堆)。所以一般在小规模的序列中不合适,但对于较大的序列,将表现出优越的性能。
直接插入排序:简单的插入排序,每次比较后最多移掉一个逆序,因此与冒泡排序的效率相同。但它在速度上还是要高点,这是因为在冒泡排序下是进行值交换,而在插入排序下是值移动,所以直接插入排序将要优于冒泡排序。直接插入法也是一种对数据的有序性非常敏感的一种算法。在有序情况下只需要经过n-1次比较,在最坏情况下,将需要n(n-1)/2次比较。
希尔排序:增量的选择将影响希尔排序的效率。但是无论怎样选择增量,最后一定要使增量为1,进行一次直接插入排序。但它相对于直接插入排序,由于在子表中每进行一次比较,就可能移去整个经性表中的多个逆序,从而改善了整个排序性能。希尔排序算是一种基于插入排序的算法,所以对数据有序敏感。
归并排序:归并排序是一种非就地排序,将需要与待排序序列一样多的辅助空间。在使用它对两个己有序的序列归并,将有无比的优势。其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。对数据的有序性不敏感。若数据节点数据量大,那将不适合。但可改造成索引操作,效果将非常出色。
基数排序:在程序中采用的是以数值的十进制位分解,然后对空间采用一次性分配,因此它需要较多的辅助空间(10*n+10), (但我们可以进行其它分解,如以一个字节分解,空间采用链表将只需辅助空间n+256)。基数排序的时间是线性的(即O(n))。由此可见,基数排序非常吸引人,但它也不是就地排序,若节点数据量大时宜改为索引排序。但基数排序有个前提,要关键字能象整型、字符串这样能分解,若是浮点型那就不行了。
按平均时间将排序分为类:
(1) 平方阶(O(n2))排序
各类简单排序,例如直接插入、直接选择和冒泡排序;
(2) 线性对数阶(O(nlog2n))排序
如快速排序、堆排序和归并排序;
(3) O(n1+§))排序
§是介于0和1之间的常数。希尔排序便是一种;
(4) 线性阶(O(n))排序
本程序中的基数排序,此外还有桶、箱排序。
排序方法的选择
因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法很重要
(1)若n较小,可采用直接插入或直接选择排序。
当记录规模较小时,直接插入排序较好,它会比选择更少的比较次数;
但当记录规模较大时,因为直接选择移动的记录数少于直接插人,所以宜用选直接选择排序。
这两种都是稳定排序算法。
(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜(这里的随机是指基准取值的随机,原因见上的快速排序分析);这里快速排序算法将不稳定。
(3)若n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。
快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
堆排序虽不会出现快速排序可能出现的最坏情况。但它需要建堆的过程。这两种排序都是不稳定的。
归并排序是稳定的排序算法,但它有一定数量的数据移动,所以我们可能过与插入排序组合,先获得一定长度的序列,然后再合并,在效率上将有所提高。
(4)特殊的箱排序、基数排序
它们都是一种稳定的排序算法,但有一定的局限性:
1、关键字可分解。
2、记录的关键字位数较少,如果密集更好
3、如果是数字时,最好是无符号的,否则将增加相应的映射复杂度,可先将其正负分开排序。
事实上各种排序方法个有优缺点适用于不同的场合:
排序(Sorting)
插入排序(insertion sort):直接插入排序 希尔排序(shell's sort)(缩小增量排序Diminishing increment sort)
交换排序:冒泡排序(bubble sort)快速排序(quick sort)
选择排序:直接选择排序(straight selection sort),堆排序;
归并排序(merge sort):
分配排序:箱排序(Bin sort),基数排序(radix sort)
更多的自己研究一下。
排序方法的选取主要考虑算法的性能与资源占用。也就是速度和占用的存储空间。
希望对你有所帮助!