导航:首页 > 源码编译 > weka添加算法

weka添加算法

发布时间:2022-11-21 06:54:31

1. 怎样用weka对数据进行神经网络训练

常用的神经网络就是向前反馈的BP(Back Propagation)网络,也叫多层前馈网络,而BP在weka中就是由MultilayerPerceptron算法实现的。

所以呢
在weka explorer中选用classifiers.functions.MultilayerPerceptron训练分类模型就可以了^^

2. 如何学习在eclipse工程中对weka算法的调用

eka是很好用的机器学习库,这里就不详细介绍了。
言归正传,要使用程序方式使用weka,步骤如下:
一、在eclipse里新建一个java project:
1. 建立工程:单击菜单中file->new->java project,在弹出对话框的project name中起任意一个名字,此处假设是wekaTest。单击Finish按钮(在对话框底部)。
2. 建立package:在package Explorer中找到刚才新建的工程,在其上右键->New->package。在Name文本框里面输入名称,此处假设为Test。单击Finish按钮。
3. 建立程序文件:在刚才新建的package上面右键->New->class,选中public static void main(String[] args)多选框,单击Finish。
二、在该工程中添加weka的引用:
1. package Explorer中工程名上右键,选择弹出菜单最后一项properties->在左面选中java Build Path->在右面的Library页面->单击Add External JARs…->浏览weka所在目录,将weka.jar添加进来,然后单击ok。

3. 如何将excel表中的数据用weka进行聚类分析

你用weka做二次开发,你也没说你哪些接口用的weka的,首先你生成的arff文件中,文档有没有先分词,分词后有没有离散化,确保你的arff文件中attribute必须是一个一个的词,当然训练时也要包含类别信息,用于聚类后的验证,离散化后转成vsm模式,聚类方法你估计用的weka接口实现的,kmeans的输入参数可以指定聚几个类。

4. 如何将dbscan算法导入weka中

看清楚dbscan算法中有两个关键的参数是 EPS, and Min group threshold. 直观的想法是,如果你的eps很大,min-group-threshold 也很大的时候,那你得到的聚类的类数目就会少很多,那你搜索的时候就可能很快收敛。

5. Weka里可以直接使用TAN算法吗还是需要自己添加本人作毕业设计刚刚接触Weka,求高人指点!

没有的,Weka中只自带了一些典型的算法,像SimpleKmeans之类的。但是可以把算法集成到Weka中,不知道你最后是用Weka的GUI演示还是用Weka的API开发,前者的话麻烦一点。我做毕设也刚好用到Weka,你也应该是做数据挖掘的东西的吧!希望对你有帮助。

6. weka中自己带了哪些分类算法啊,比如决策树之外的。

weka算法有很多,按大类分有bayes,function,tree以及rules算法等。各个大类下面包含很多算法,比如tree类下就有决策树,logistic tree,functional tree, random forest等等。具体可以看一下wake软件说明。

7. 如何用weka将多种分类算法集成起来

需要将文件转换成标称(nominal)类型,weka把exel中的数字看作是数据类型,不能处理,从而导致Apriori算法没法用。
WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),同时weka也是新西兰的一种鸟名,而WEKA的主要开发者来自新西兰。wekaWEKA作为一个公开的数据挖掘工作,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以参考weka的接口文档。在weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情。
2005年8月,在第11届ACM SIGKDD国际会议上,怀卡托大学的Weka小组荣获了数据挖掘和知识探索领域的最高服务奖,Weka系统得到了广泛的认可,被誉为数据挖掘和机器学习 历史上的里程碑,是现今最完备的数据挖掘工具之一(已有11年的发展历史)。Weka的每月次数已超过万次。

8. 基于法weka两种算法结合怎么做

1) 数据输入和输出
WOW():查看Weka函数的参数。
Weka_control():设置Weka函数的参数。
read.arff():读Weka Attribute-Relation File Format (ARFF)格式的数据。
write.arff:将数据写入Weka Attribute-Relation File Format (ARFF)格式的文件。

2) 数据预处理
Normalize():无监督的标准化连续性数据。
Discretize():用MDL(Minimum Description Length)方法,有监督的离散化连续性数值数据。

9. 如何在WEKA中添加自己的算法

1. 编写新算法,所编写的新算法必须符合Weka 的接口标准。在此以从Weka中文站上下载的一个算法(模糊C均值聚类算法:FuzzyCMeans)的添加为例说明其具体过程。

2. 由于FuzzyCMeans是聚类算法,所以直接将FuzzyCMeans.java 源程序考到 weka.clusterers 包下

3. 再修改weka.gui.GenericObjectEditor.props ,在#Lists the Clusterers I want to choose from的weka.clusterers.Clusterer=\下加入:weka.clusterers.FuzzyCMeans

4. 相应的修改weka.gui.GenericPropertiesCreator.props ,此去不用修改,因为包weka.clusterers已经存在,若加入新的包时则必须修改这里,加入新的包

我试了一下,这样加入之后,重新编译,运行后,可以在weka的Explorer界面上的Cluster选项卡中的聚类算法中找到刚刚新添加的FuzzyCMeans算法。

添加过程简单吧!关键问题是要弄清楚Weka的内核以及其接口标准,然后编写出符合此规范的新算法。

阅读全文

与weka添加算法相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:766
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:841
安卓怎么下载60秒生存 浏览:800
外向式文件夹 浏览:233
dospdf 浏览:428
怎么修改腾讯云服务器ip 浏览:385
pdftoeps 浏览:490
为什么鸿蒙那么像安卓 浏览:733
安卓手机怎么拍自媒体视频 浏览:183
单片机各个中断的初始化 浏览:721
python怎么集合元素 浏览:478
python逐条解读 浏览:830
基于单片机的湿度控制 浏览:496
ios如何使用安卓的帐号 浏览:880
程序员公园采访 浏览:809
程序员实战教程要多长时间 浏览:972
企业数据加密技巧 浏览:132
租云服务器开发 浏览:811
程序员告白妈妈不同意 浏览:333
攻城掠地怎么查看服务器 浏览:600