导航:首页 > 源码编译 > 有没有老程序员比赛算法

有没有老程序员比赛算法

发布时间:2023-01-26 23:39:55

A. 作为一个程序员,有哪些常用的算法

常用的算法有:递推法、贪心法、列举法、递归法、分治法和模拟法
原则:1. 扎实的基础。数据结构、离散数学、编译原理,这些是所有计算机科学的基础,如果不掌握他们,很难写出高水平的程序。据我的观察,学计算机专业的人比学其他专业的人更能写出高质量的软件。程序人人都会写,但当你发现写到一定程度很难再提高的时候,就应该想想是不是要回过头来学学这些最基本的理论。不要一开始就去学OOP,即使你再精通OOP,遇到一些基本算法的时候可能也会束手无策。

2. 丰富的想象力。不要拘泥于固定的思维方式,遇到问题的时候要多想几种解决问题的方案,试试别人从没想过的方法。丰富的想象力是建立在丰富的知识的基础上,除计算机以外,多涉猎其他的学科,比如天文、物理、数学等等。另外,多看科幻电影也是一个很好的途径。

3. 最简单的是最好的。这也许是所有科学都遵循的一条准则,如此复杂的质能互换原理在爱因斯坦眼里不过是一个简单得不能再简单的公式:E=mc2。简单的方法更容易被人理解,更容易实现,也更容易维护。遇到问题时要优先考虑最简单的方案,只有简单方案不能满足要求时再考虑复杂的方案。

4. 不钻牛角尖。当你遇到障碍的时候,不妨暂时远离电脑,看看窗外的风景,听听轻音乐,和朋友聊聊天。当我遇到难题的时候会去玩游戏,而且是那种极暴力的打斗类游戏,当负责游戏的那部分大脑细胞极度亢奋的时候,负责编程的那部分大脑细胞就得到了充分的休息。当重新开始工作的时候,我会发现那些难题现在竟然可以迎刃而解。

5. 对答案的渴求。人类自然科学的发展史就是一个渴求得到答案的过程,即使只能知道答案的一小部分也值得我们去付出。只要你坚定信念,一定要找到问题的答案,你才会付出精力去探索,即使最后没有得到答案,在过程中你也会学到很多东西。

6. 多与别人交流。三人行必有我师,也许在一次和别人不经意的谈话中,就可以迸出灵感的火花。多上上网,看看别人对同一问题的看法,会给你很大的启发。

7. 良好的编程风格。注意养成良好的习惯,代码的缩进编排,变量的命名规则要始终保持一致。大家都知道如何排除代码中错误,却往往忽视了对注释的排错。注释是程序的一个重要组成部分,它可以使你的代码更容易理解,而如果代码已经清楚地表达了你的思想,就不必再加注释了,如果注释和代码不一致,那就更加糟糕。

8. 韧性和毅力。这也许是"高手"和一般程序员最大的区别。A good programming is 99 weat and 1 ffee。高手们并不是天才,他们是在无数个日日夜夜中磨练出来的。成功能给我们带来无比的喜悦,但过程却是无比的枯燥乏味。你不妨做个测试,找个10000以内的素数表,把它们全都抄下来,然后再检查三遍,如果能够不间断地完成这一工作,你就可以满足这一条。

希望对你有帮助

B. 编程大赛有哪些

总结了7个编程大赛,希望能够帮助到你:

1、TopCoder

TopCoder是一家被上百万程序员喜爱的编程比赛网站。包括算法竞赛、组建设计竞赛、组建开发竞赛等。其算法竞赛在全球与ACM、Google Code Jam并称为三大赛事。

2、Codeforces

虽然介绍到了,但提醒一句,Codeforces不是给凡人准备的。这个是神仙使用的编程比赛网站,大家知道下就好。

3、CodeMonk

CodeMonk是HackerEarth推出的系列挑战赛事,让程序员们全身心沉浸在自己编写的代码中,真正地专注于问题的解决,并获得自身突破。

4、Project Euler

欧拉计划也是全球人气最高的编程挑战项目之一,深受上百万程序员喜爱。但是和Codeforces不同,这些挑战并不是高不可攀到神仙才能解答,而是非常实用的,调动大家思考与解决问题的。

5、Facebook Hacker Cup

这是由Facebook举办的国际性编程大赛。参赛者需要在一段时间内解决一组算法题,可以使用任何编程语言来解决问题。

6、ACM 国际大学生程序设计竞赛

ACM是由美国计算机协会主办,现在已经是全球最具影响力的大学生编程比赛。该比赛会综合测试参赛者创新、团队能力以及高压编程、分析能力等。

7、Google Code Jam

Google Code Jam是一项由Google主办的国际程序设计竞赛。该项赛事始于2003年,旨在帮助Google发掘潜在的工程领域顶级人才。比赛内容包括一系列的算法问题,参赛者必须在指定时间内解决。参赛者允许使用任意自选编程语言和开发环境来解答问题。

想要学习编程知识,推荐来北京尚学堂

C. 程序员必须掌握哪些算法

  1. A搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

  2. 集束搜索(又名定向搜索,BeamSearch)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

  3. 二分查找(BinarySearch)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

  4. 分支界定算法(BranchandBound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

  5. Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

  6. 数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

  7. Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

  8. Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

  9. 离散微分算法(Discretedifferentiation)

  10. 动态规划算法(DynamicProgramming)——展示互相覆盖的子问题和最优子架构算法

  11. 欧几里得算法(Euclideanalgorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

  12. 期望-最大算法(Expectation-maximizationalgorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。

  13. 快速傅里叶变换(FastFouriertransform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。

  14. 梯度下降(Gradientdescent)——一种数学上的最优化算法。

  15. 哈希算法(Hashing)

  16. 堆排序(Heaps)

  17. Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。

  18. LLL算法(Lenstra-Lenstra-Lovaszlatticerection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。

  19. 最大流量算法(Maximumflow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flowmin-cuttheorem)。Ford-Fulkerson能找到一个流网络中的最大流。

  20. 合并排序(MergeSort)

  21. 牛顿法(Newton'smethod)——求非线性方程(组)零点的一种重要的迭代法。

  22. Q-learning学习算法——这是一种通过学习动作值函数(action-valuefunction)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。

  23. 两次筛法(QuadraticSieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法NumberFieldSieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。

  24. RANSAC——是“RANdomSAmpleConsensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。

  25. RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。

  26. Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(Nlog(N)log(log(N))),该算法使用了傅里叶变换。

  27. 单纯型算法(SimplexAlgorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。

  28. 奇异值分解(Singularvaluedecomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdeterminedlinearsystems)、矩阵逼近、数值天气预报等等。

  29. 求解线性方程组()——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordanelimination),或是柯列斯基分解(Choleskydecomposition)。

  30. Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域(homogenousregion),看看它是否属于边缘,还是是一个顶点。

  31. 合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:

  32. 查找:判断某特定元素属于哪个组。

  33. 合并:联合或合并两个组为一个组。

  34. 维特比算法(Viterbialgorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

D. 程序员算法解题方法与思路

此方法通过写出问题的一些特定的例子,分析总结其中的规律。具体而言,就是通过列举少量的特殊情况,经过分析,最后找出一般的关系。

问题与以前莫个算法解决过的问题相似,此时就可以触类旁通,尝试改进原有算法来解决

此方法首先将问题简单化,如改变数据类型、空间大小等,然后尝试着将简化后的问题解决。

为了降低问题的复杂度,很多时候都会将问题逐层分解,最后归结为一些简单的问题,这就是递归法

将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。分治法一般包括以下三个步骤:

1)将问题的实例划分为几个较小的实例,最好最有相等的规模。

2)对这些较小的实例求解,而最常见的方法一般是递归。

3)如歌有必要,合并这些较小问题的解,以得到原始问题的解。

一般而言,时间复杂度越低的算法越高效。而更想达到时间复杂度的高效,很多时候就必须在空间上有所牺牲,用空间来换时间。而用空间换时间最有效的方法就是Hash法、大数组和位图法。

在设计题目时,往往会有一个载体,这个载体便是数据结构。如数组、链表、二叉树和图等,当窄体确定后,可用的算法自然而然就会显现出来。可问题是很多时候并不确定这个载体是什么,当无法确定这个载体时,一般也就很难想到合适的方法了。

当遇到上面的问题时,可以采用最原始的思考问题的方式——轮询法。常考的数据结构与算法一共就几种,如下图

此种方法看似笨拙,却很实用,只要对常见的数据结构与算法烂熟于心,一点都没有问题。

E. 程序员开发用到的十大基本算法

算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:
1.创建一个堆H[0..n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置
4.重复步骤2,直到堆的尺寸为1

算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

算法四:二分查找算法
二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜 素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组 为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

算法五:BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分 析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂 度,五位算法作者做了精妙的处理。

算法步骤:

终止条件:n=1时,返回的即是i小元素。

算法六:DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分 支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发 现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

算法步骤:

上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法七:BFS(广度优先搜索)
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想象成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法九:动态规划算法
动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。 通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。 这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

算法十:朴素贝叶斯分类算法
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。

F. python 算法有哪些比赛

算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。简单来讲,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。包括这几类:
1.
选择排序算法:选择排序是一种简单直观的排序算法。原理:首先在未排序序列中找到最小或最大元素,存放到排序序列的起始位置;然后,再从剩余未排序元素中继续寻找最大最小元素,然后放到已排序序列的后面,以此类推直到所有元素均排序完毕。
2.
快速排序算法:快速排序的运行速度快于选择排序。原理:设要排序的数组为N,首先任意选取一个数据作为关键数据,然后将所有比它小的数放到它前面,所有比它大的数都放到它后面,这个过程称之为快速排序。
3. 二分查找算法:二分查找的输入是一个有序的列表,如果要查找的元素包含在一个有序列表中,二分查找可以返回其位置。
4.
广度优先搜索算法:属于一种图算法,图由节点和边组成。一个节点可以与多个节点连接,这些节点称为邻居。它可以解决两类问题:第一类是从节点A出发,在没有前往节点B的路径;第二类问题是从节点A出发,前往B节点的哪条路径最短。使用广度优先搜索算法的前提是图的边没有权值,即该算法只用于非加权图中,如果图的边有权值的话就应该使用狄克斯特拉算法来查找最短路径。
5.
贪婪算法:又叫做贪心算法,对于没有快速算法的问题,就只能选择近似算法,贪婪算法寻找局部最优解,并企图以这种方式获得全局最优解,它易于实现、运行速度快,是一种不错的近似算法。

阅读全文

与有没有老程序员比赛算法相关的资料

热点内容
许志安演的电影有哪些 浏览:822
odbc文件夹是什么 浏览:391
男主用铁链囚禁女主的小说 浏览:913
sift算法harris算法 浏览:241
python命令行模式 浏览:459
新妈妈韩国电影中的辅导老师是谁 浏览:388
php邮箱验证代码 浏览:404
光猫伪装命令 浏览:175
安卓高端机为什么都用曲屏 浏览:419
老电影大全 战争片 浏览:971
有没有小电影得网址网站 浏览:378
奥特曼电影排行榜前十名 浏览:580
安卓光遇账号过期怎么找回 浏览:476
现金宝宝app在哪里能下载 浏览:277
二战女教师慰安妇电影 浏览:270
传说对决录像在哪个文件夹 浏览:136
不用充钱就能看电视剧的网站 浏览:562
卧式空气压缩机 浏览:137
合川排课管理系统源码 浏览:439