导航:首页 > 源码编译 > 时间复杂度为on的排序算法

时间复杂度为on的排序算法

发布时间:2023-10-28 06:50:39

㈠ 5. 设有n个顾客同时等待一项服务。顾客i需要的服务时间为ti,1<=i<=n。应如何安排n个顾客的服务次序才能

上面的 思路不错

最优服务次序问题
一、问题描述:
设有n 个顾客同时等待一项服务。顾客i需要的服务时间为ti, 1≦i ≦n 。共有s处可以提供此服务。应如何安排n个顾客的服务次序才能使平均等待时间达到最小?平均等待时间是n 个顾客等待服务时间的总和除以n。
二、贪心选择策略
假设原问题为T,而我们已经知道了某个最优服务系列,即最优解为A={t(1),t(2),….t(n)}(其中t(i)为第i个用户需要的服务时间),则每个用户等待时间为:
T(1)=t(1);T(2)=t(1)+t(2);...T(n):t(1)+t(2)+t(3)+……t(n);
那么总等待时问,即最优值为:
TA=n*t(1)+(n-1)*t(2)+…+(n+1-j)*t(i)+…2*t(n-1)+t(n);
由于平均等待时间是n个顾客等待时间的总和除以n,故本题实际上就是求使顾客等待时间的总和最小的服务次序。
本问题采用贪心算法求解,贪心策略如下:对服务时间最短的顾客先服务的贪心选择策略。首先对需要服务时间最短的顾客进行服务,即做完第一次选择后,原问题T变成了需对n-1个顾客服务的新问题T’。新问题和原问题相同,只是问题规模由n减小为n-1。基于此种选择策略,对新问题T’,选择n-1顾客中选择服务时间最短的先进行服务,如此进行下去,直至所有服务都完成为止 。
三、问题的贪心选择性质
先来证明该问题具有贪心选择性质,即最优服务A中t(1)满足条件:t(1)<=t(i)(2<i<n)。
用反证法来证明:假设t(1)不是最小的,不妨设t(1)>t(i)(i>1)。
设另一服务序列B=(t(i),t(2),…,t(1)…,t(n))
那么TA-TB=n*[t(1)-t(i)]+(n+1-i)[t(i)-t(1)]=(1-i)*[t(i)-t(1)]>0
即TA>TB,这与A是最优服务相矛盾。
故最优服务次序问题满足贪心选择性质。
四、问题的最优子结构性质
在进行了贪心选择后,原问题T就变成了如何安排剩余的n-1个顾客的服务次序的问题T’,是原问题的子问题。
若A是原问题T的最优解,则A’={t(2),…t(i)…t(n))是服务次序问题子问题T’的最优解。
证明:假设A’不是子问题T’的最优解,其子问题的最优解为B’,则有TB’<TA’,而根据TA的定义知,TA’十t(1)=TA。因此TB’+t(1)<TA’+t(1)=TA,即存在一个比最优值TA更短的总等待时间,而这与TA为问题T的最优值相矛盾。因此,A’是子问题T’的最优值。
从以上贪心选择及最优子结构性质的证明,可知对最优服务次序问题用贪心算法可求得最优解。
根据以上证明,最优服务次序问题可以用最短服务时间优先的贪心选择可以达到最优解。故只需对所有服务先按服务时间从小到大进行排序,然后按照排序结果依次进行服务即可。平均等待时间即为TA/n。
五、算法实现
由多处最优服务次序问题具有贪心选择性质和最优子结构性质,容易证明算法greedy的正确性。本算法采用最短服务时间优先的贪心策略。首先将每个顾客所需要的服务时间从小到大排序。然后申请2个数组:st[]是服务数组,st[j]为第j个队列上的某一个顾客的等待时间;su[]是求和数组,su[j]的值为第j个队列上所有顾客的等待时间;
double greedy(vector<int>x,int s)
{
vector<int>st(s+1,0);
vector<int>su(s+1,0);
int n=x.size();
sort(x.begin(),x.end());
int i=0,j=0;
while(i<n){
st[j]+=x[i];
su[j]+=st[j];
i++;
j++;
if(j==s)j=0;//循环分配顾客到每一个服务点上
}
double t=0;
for(i=0;i<s;i++) t+=su[i];
t/=n;
return t;
}
六、算法测试结果

七、算法复杂性分析
程序主要是花费在对各顾客所需服务时间的排序和贪心算法,即计算平均服务时间上面。其中,贪心算法部分只有一重循环影响时间复杂度,其时间复杂度为O(n):而排序算法的时间复杂度为O(nlogn)。因此,综合来看算法的时间复杂度为O(nlogn)。
八、参考文献
[1] 王晓东.计算机算法设计与分析(第3版)[M].北京:电子工业出版社,2007.
[2] 陈媛.《算法与数据结构》[M],清华大学出版社, 第1版,2005.4.
[3] 王晓东.算法设计与实验题解 [M].北京:电子工业出版社,2008.

附录(程序代码)
#include<iostream>
#include <vector>
#include<algorithm>
using namespace std;
using std::vector;
double greedy(vector<int>x,int s)
{
vector<int>st(s+1,0);
vector<int>su(s+1,0);
int n=x.size();
sort(x.begin(),x.end());
int i=0,j=0;
while(i<n){
st[j]+=x[i];
su[j]+=st[j];
i++;
j++;
if(j==s)j=0;
}
double t=0;
for(i=0;i<s;i++) t+=su[i];
t/=n;
return t;
}
void main()
{int n;//等待服务的顾客人数
int s;//服务点的个数
int i;
int a;
int t;//平均服务时间
vector<int>x;
cout<<"please input the num of the customer:"<<endl;
cin>>n;
cout<<"please input the num of the server:"<<endl;
cin>>s;
cout<<"please input the need service time of each customer:"<<endl;
for(i=1;i<=n;i++){
cout<<"No."<<i<<endl;
cin>>a;
x.push_back(a);
}
t=greedy(x, s);
cout<<"the least average waiting time is:"<<t<<endl;
}

㈡ 快速排序算法在平均情况下的时间复杂度为 求详解

时间复杂度为O(nlogn) n为元素个数
1. 快速排序的三个步骤:
1.1. 找到序列中用于划分序列的元素
1.2. 用元素划分序列
1.3. 对划分后的两个序列重复1,2两个步骤指导序列无法再划分
所以对于n个元素其排序时间为
T(n) = 2*T(n/2) + n (表示将长度为n的序列划分为两个子序列,每个子序列需要T(n/2)
的时间,而划分序列需要n的时间)
而 T(1) = 1 (表示长度为1的序列无法划分子序列,只需要1的时间即可)
T(n) = 2^logn + logn * n (n被不断二分最终只能二分logn次(最优的情况,每次选取
的元素都均分序列))
= n + nlogn
因此T(n) = O(nlogn)
以上是最优情况的推导,因此快速排序在最优情况下其排序时间为O(nlogn),通常平均情况
我们也认为是此值。
在最坏情况下其会退化为冒泡排序,T(n) = T(n - 1) + n (每次选取的元素只能将序列划分为
一段,即自身是 最小元素或最大元素)
因此T(n) = n * (n-1) / 2 相当于O(n^2)

阅读全文

与时间复杂度为on的排序算法相关的资料

热点内容
用粘液做解压手套 浏览:327
icloud收信服务器地址 浏览:498
编程思考者 浏览:450
压缩机型号用什么氟利昂 浏览:553
农机空气压缩机 浏览:664
程序员下载歌曲 浏览:894
编译未检测到仿真器 浏览:807
压缩机每次启动12分钟就停 浏览:730
creo复制曲面命令 浏览:959
程序员恋上女硕士 浏览:669
ansys的get命令 浏览:988
国外dns苹果服务器地址 浏览:430
国家职业技术资格证书程序员 浏览:652
奇瑞租车app是什么 浏览:99
系统源码安装说明 浏览:420
命令行加壳 浏览:96
解压时显示防失效视频已加密 浏览:295
苹果短信加密发送 浏览:446
天翼私有云服务器租用 浏览:733
贵州云服务器属于哪个上市公司 浏览:59