导航:首页 > 源码编译 > rsa解密算法c语言实现

rsa解密算法c语言实现

发布时间:2025-06-05 14:11:57

‘壹’ RSA加密算法怎样用C语言实现 急急急!!!

/*数据只能是大写字母组成的字符串。
加密的时候,输入Y,然后输入要加密的文本(大写字母)
解密的时候,输入N,然后输入一个整数n表示密文的个数,然后n个整数表示加密时候得到的密文。
*/
/*RSA algorithm */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MM 7081
#define KK 1789
#define PHIM 6912
#define PP 85
typedef char strtype[10000];
int len;
long nume[10000];
int change[126];
char antichange[37];

void initialize()
{ int i;
char c;
for (i = 11, c = 'A'; c <= 'Z'; c ++, i ++)
{ change[c] = i;
antichange[i] = c;
}
}
void changetonum(strtype str)
{ int l = strlen(str), i;
len = 0;
memset(nume, 0, sizeof(nume));
for (i = 0; i < l; i ++)
{ nume[len] = nume[len] * 100 + change[str[i]];
if (i % 2 == 1) len ++;
}
if (i % 2 != 0) len ++;
}
long binamod(long numb, long k)
{ if (k == 0) return 1;
long curr = binamod (numb, k / 2);
if (k % 2 == 0)
return curr * curr % MM;
else return (curr * curr) % MM * numb % MM;
}
long encode(long numb)
{ return binamod(numb, KK);
}
long decode(long numb)
{ return binamod(numb, PP);
}
main()
{ strtype str;
int i, a1, a2;
long curr;
initialize();
puts("Input 'Y' if encoding, otherwise input 'N':");
gets(str);
if (str[0] == 'Y')
{ gets(str);
changetonum(str);
printf("encoded: ");
for (i = 0; i < len; i ++)
{ if (i) putchar('-');
printf(" %ld ", encode(nume[i]));
}
putchar('\n');
}
else
{ scanf("%d", &len);
for (i = 0; i < len; i ++)
{ scanf("%ld", &curr);
curr = decode(curr);
a1 = curr / 100;
a2 = curr % 100;
printf("decoded: ");
if (a1 != 0) putchar(antichange[a1]);
if (a2 != 0) putchar(antichange[a2]);
}
putchar('\n');
}
putchar('\n');
system("PAUSE");
return 0;
}

/*
测试:
输入:
Y
FERMAT
输出:
encoded: 5192 - 2604 - 4222
输入
N
3 5192 2604 4222
输出
decoded: FERMAT
*/

‘贰’ MD5是如何编译

MD5简介

MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2、MD3和MD4发展而来。

Message-Digest泛指字节串(Message)的Hash变换,就是把一个任意长度的字节串变换成一定长的大整数。请注意我使用了“字节串”而不是“字符串”这个词,是因为这种变换只与字节的值有关,与字符集或编码方式无关。

MD5将任意长度的“字节串”变换成一个128bit的大整数,并且它是一个不可逆的字符串变换算法,换句话说就是,即使你看到源程序和算法描述,也无法将一个MD5的值变换回原始的字符串,从数学原理上说,是因为原始的字符串有无穷多个,这有点象不存在反函数的数学函数。

MD5的典型应用是对一段Message(字节串)产生fingerprint(指纹),以防止被“篡改”。举个例子,你将一段话写在一个叫readme.txt文件中,并对这个readme.txt产生一个MD5的值并记录在案,然后你可以传播这个文件给别人,别人如果修改了文件中的任何内容,你对这个文件重新计算MD5时就会发现。如果再有一个第三方的认证机构,用MD5还可以防止文件作者的“抵赖”,这就是所谓的数字签名应用。

MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的,用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统并不“知道”用户的密码是什么。

一些黑客破获这种密码的方法是一种被称为“跑字典”的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。

即使假设密码的最大长度为8,同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘组,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。

在很多电子商务和社区应用中,管理用户的Account是一种最常用的基本功能,尽管很多Application Server提供了这些基本组件,但很多应用开发者为了管理的更大的灵活性还是喜欢采用关系数据库来管理用户,懒惰的做法是用户的密码往往使用明文或简单的变换后直接保存在数据库中,因此这些用户的密码对软件开发者或系统管理员来说可以说毫无保密可言,本文的目的是介绍MD5的java Bean的实现,同时给出用MD5来处理用户的Account密码的例子,这种方法使得管理员和程序设计者都无法看到用户的密码,尽管他们可以初始化它们。但重要的一点是对于用户密码设置习惯的保护。

有兴趣的读者可以从这里取得MD5也就是RFC 1321的文本。 http://www.ietf.org/rfc/rfc1321.txt

实现策略

MD5的算法在RFC1321中实际上已经提供了C的实现,我们其实马上就能想到,至少有两种用Java实现它的方法,第一种是,用Java语言重新写整个算法,或者再说简单点就是把C程序改写成Java程序。第二种是,用JNI(Java Native Interface)来实现,核心算法仍然用这个C程序,用Java类给它包个壳。

但我个人认为,JNI应该是Java为了解决某类问题时的没有办法的办法(比如与操作系统或I/O设备密切相关的应用),同时为了提供和其它语言的互操作性的一个手段。使用JNI带来的最大问题是引入了平台的依赖性,打破了SUN所鼓吹的“一次编写到处运行”的Java好处。因此,我决定采取第一种方法,一来和大家一起尝试一下“一次编写到处运行”的好处,二来检验一下Java 2现在对于比较密集的计算的效率问题。

实现过程

限于这篇文章的篇幅,同时也为了更多的读者能够真正专注于问题本身,我不想就某一种Java集成开发环境来介绍这个Java Bean的制作过程,介绍一个方法时我发现步骤和命令很清晰,我相信有任何一种Java集成环境三天以上经验的读者都会知道如何把这些代码在集成环境中编译和运行。用集成环境讲述问题往往需要配很多屏幕截图,这也是我一直对集成环境很头疼的原因。我使用了一个普通的文本编辑器,同时使用了Sun公司标准的JDK 1.3.0 for Windows NT。

其实把C转换成Java对于一个有一定C语言基础的程序员并不困难,这两个语言的基本语法几乎完全一致.我大概花了一个小时的时间完成了代码的转换工作,我主要作了下面几件事:

把必须使用的一些#define的宏定义变成Class中的final static,这样保证在一个进程空间中的多个Instance共享这些数据
删去了一些无用的#if define,因为我只关心MD5,这个推荐的C实现同时实现了MD2 MD3和 MD4,而且有些#if define还和C不同编译器有关
将一些计算宏转换成final static 成员函数。
所有的变量命名与原来C实现中保持一致,在大小写上作一些符合Java习惯的变化,计算过程中的C函数变成了private方法(成员函数)。
关键变量的位长调整
定义了类和方法
需要注意的是,很多早期的C编译器的int类型是16 bit的,MD5使用了unsigned long int,并认为它是32bit的无符号整数。而在Java中int是32 bit的,long是64 bit的。在MD5的C实现中,使用了大量的位操作。这里需要指出的一点是,尽管Java提供了位操作,由于Java没有unsigned类型,对于右移位操作多提供了一个无符号右移:>>>,等价于C中的 >> 对于unsigned 数的处理。

因为Java不提供无符号数的运算,两个大int数相加就会溢出得到一个负数或异常,因此我将一些关键变量在Java中改成了long类型(64bit)。我个人认为这比自己去重新定义一组无符号数的类同时重载那些运算符要方便,同时效率高很多并且代码也易读,OO(Object Oriented)的滥用反而会导致效率低下。

限于篇幅,这里不再给出原始的C代码,有兴趣对照的读者朋友可以去看RFC 1321。MD5.java源代码

测试

在RFC 1321中,给出了Test suite用来检验你的实现是否正确:

MD5 ("") =

MD5 ("a") =

MD5 ("abc") =

MD5 ("message digest") =

MD5 ("abcdefghijklmnopqrstuvwxyz") =

……

这些输出结果的含义是指:空字符串””的MD5值是,字符串”a”的MD5值是……
编译并运行我们的程序:
javac –d . MD5.java
java beartool.MD5
为了将来不与别人的同名程序冲突,我在我的程序的第一行使用了package beartool;

因此编译命令javac –d . MD5.java 命令在我们的工作目录下自动建立了一个beartool目录,目录下放着编译成功的 MD5.class

我们将得到和Test suite同样的结果。当然还可以继续测试你感兴趣的其它MD5变换,例如:

java beartool.MD5 1234

将给出1234的MD5值。

可能是我的计算机知识是从Apple II和Z80单板机开始的,我对大写十六进制代码有偏好,如果您想使用小写的Digest String只需要把byteHEX函数中的A、B、C、D、E、F改成a、b、 c、d、e、f就可以了。

MD5据称是一种比较耗时的计算,我们的Java版MD5一闪就算出来了,没遇到什么障碍,而且用肉眼感觉不出来Java版的MD5比C版的慢。

为了测试它的兼容性,我把这个MD5.class文件拷贝到我的另一台Linux+IBM JDK 1.3的机器上,执行后得到同样结果,确实是“一次编写到处运行了”。

Java Bean简述

现在,我们已经完成并简单测试了这个Java Class,我们文章的标题是做一个Java Bean。

其实普通的Java Bean很简单,并不是什么全新的或伟大的概念,就是一个Java的Class,尽管 Sun规定了一些需要实现的方法,但并不是强制的。而EJB(Enterprise Java Bean)无非规定了一些必须实现(非常类似于响应事件)的方法,这些方法是供EJB Container使用(调用)的。

在一个Java Application或Applet里使用这个bean非常简单,最简单的方法是你要使用这个类的源码工作目录下建一个beartool目录,把这个class文件拷贝进去,然后在你的程序中import beartool.MD5就可以了。最后打包成.jar或.war是保持这个相对的目录关系就行了。

Java还有一个小小的好处是你并不需要摘除我们的MD5类中那个main方法,它已经是一个可以工作的Java Bean了。Java有一个非常大的优点是她允许很方便地让多种运行形式在同一组代码中共存,比如,你可以写一个类,它即是一个控制台Application和GUI Application,同时又是一个Applet,同时还是一个Java Bean,这对于测试、维护和发布程序提供了极大的方便,这里的测试方法main还可以放到一个内部类中,有兴趣的读者可以参考: http://www.cn.ibm.com/developerWorks/java/jw-tips/tip106/index.shtml

这里讲述了把测试和示例代码放在一个内部静态类的好处,是一种不错的工程化技巧和途径。

把Java Bean装到JSP里

正如我们在本文开头讲述的那样,我们对这个MD5 Bean的应用是基于一个用户管理,这里我们假设了一个虚拟社区的用户login过程,用户的信息保存在数据库的个名为users的表中。这个表有两个字段和我们的这个例子有关,userid :char(20)和pwdmd5 :char(32),userid是这个表的Primary Key,pwdmd5保存密码的MD5串,MD5值是一个128bit的大整数,表示成16进制的ASCII需要32个字符。

这里给出两个文件,login.html是用来接受用户输入的form,login.jsp用来模拟使用MD5 Bean的login过程。

为了使我们的测试环境简单起见,我们在JSP中使用了JDK内置的JDBC-ODBC Bridge Driver,community是ODBC的DSN的名字,如果你使用其它的JDBC Driver,替换掉login.jsp中的
Connection con= DriverManager.getConnection("jdbc:odbc:community", "", "");
即可。

login.jsp的工作原理很简单,通过post接收用户输入的UserID和Password,然后将Password变换成MD5串,然后在users表中寻找UserID和pwdmd5,因为UserID是users表的Primary Key,如果变换后的pwdmd5与表中的记录不符,那么SQL查询会得到一个空的结果集。

这里需要简单介绍的是,使用这个Bean只需要在你的JSP应用程序的WEB-INF/classes下建立一个beartool目录,然后将MD5.class拷贝到那个目录下就可以了。如果你使用一些集成开发环境,请参考它们的deploy工具的说明。在JSP使用一个java Bean关键的一句声明是程序中的第2行:

<jsp:useBean id='oMD5' scope='request' class='beartool.MD5'/>
这是所有JSP规范要求JSP容器开发者必须提供的标准Tag。

id=实际上是指示JSP Container创建Bean的实例时用的实例变量名。在后面的<%和%>之间的Java程序中,你可以引用它。在程序中可以看到,通过 pwdmd5=oMD5.getMD5ofStr (password)引用了我们的MD5 Java Bean提供的唯一一个公共方法: getMD5ofStr。

Java Application Server执行.JSP的过程是先把它预编译成.java(那些Tag在预编译时会成为java语句),然后再编译成.class。这些都是系统自动完成和维护的,那个.class也称为Servlet。当然,如果你愿意,你也可以帮助Java Application Server去干本该它干的事情,自己直接去写Servlet,但用Servlet去输出HTML那简直是回到了用C写CGI程序的恶梦时代。

如果你的输出是一个复杂的表格,比较方便的方法我想还是用一个你所熟悉的HTML编辑器编写一个“模板”,然后在把JSP代码“嵌入”进去。尽管这种JSP代码被有些专家指责为“空心粉”,它的确有个缺点是代码比较难管理和重复使用,但是程序设计永远需要的就是这样的权衡。我个人认为,对于中、小型项目,比较理想的结构是把数据表示(或不严格地称作WEB界面相关)的部分用JSP写,和界面不相关的放在Bean里面,一般情况下是不需要直接写Servlet的。

如果你觉得这种方法不是非常的OO(Object Oriented),你可以继承(extends)它一把,再写一个bean把用户管理的功能包进去。

到底能不能兼容?

我测试了三种Java应用服务器环境,Resin 1.2.3、Sun J2EE 1.2、IBM WebSphere 3.5,所幸的是这个Java Bean都没有任何问题,原因其实是因为它仅仅是个计算程序,不涉及操作系统,I/O设备。其实用其它语言也能简单地实现它的兼容性的,Java的唯一优点是,你只需提供一个形态的运行码就可以了。请注意“形态”二字,现在很多计算结构和操作系统除了语言本身之外都定义了大量的代码形态,很简单的一段C语言核心代码,转换成不同形态要考虑很多问题,使用很多工具,同时受很多限制,有时候学习一种新的“形态”所花费的精力可能比解决问题本身还多。比如光Windows就有EXE、Service、的普通DLL、COM DLL以前还有OCX等等等等,在Unix上虽说要简单一些,但要也要提供一个.h定义一大堆宏,还要考虑不同平台编译器版本的位长度问题。我想这是Java对我来说的一个非常重要的魅力吧。

MD5算法说明

一、补位
二、补数据长度
三、初始化MD5参数
四、处理位操作函数
五、主要变换过程
六、输出结果

补位:
MD5算法先对输入的数据进行补位,使得数据位长度LEN对512求余的结果是448。即数据扩展至K*512+448位。即K*64+56个字节,K为整数。
具体补位操作:补一个1,然后补0至满足上述要求。
补数据长度:
用一个64位的数字表示数据的原始长度B,把B用两个32位数表示。这时,数
据就被填补成长度为512位的倍数。
初始化MD5参数:
四个32位整数 (A,B,C,D) 用来计算信息摘要,初始化使用的是十六进制表
示的数字
A=0X01234567
B=0X89abcdef
C=0Xfedcba98
D=0X76543210

处理位操作函数:
X,Y,Z为32位整数。
F(X,Y,Z) = X&Y|NOT(X)&Z
G(X,Y,Z) = X&Z|Y?(Z)
H(X,Y,Z) = X xor Y xor Z
I(X,Y,Z) = Y xor (X|not(Z))

主要变换过程:
使用常数组T[1 ... 64], T[i]为32位整数用16进制表示,数据用16个32位
的整数数组M[]表示。
具体过程如下:

/* 处理数据原文 */
For i = 0 to N/16-1 do

/*每一次,把数据原文存放在16个元素的数组X中. */
For j = 0 to 15 do
Set X[j] to M[i*16+j].
end /结束对J的循环

/* Save A as AA, B as BB, C as CC, and D as DD.
*/
AA = A
BB = B
CC = C
DD = D

/* 第1轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

/* Do the following 16 operations. */
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3
22 4]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7
22 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA
11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]
[BCDA 15 22 16]

/* 第2轮* */
/* 以 [abcd k s i]表示如下操作
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA
0 20 20]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23]
[BCDA 4 20 24]
[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA
8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA
12 20 32]

/* 第3轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35]
[BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA
10 23 40]
[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43]
[BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47]
[BCDA 2 23 48]

/* 第4轮*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51]
[BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55]
[BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59]
[BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63]
[BCDA 9 21 64]

/* 然后进行如下操作 */
A = A + AA
B = B + BB
C = C + CC
D = D + DD

end /* 结束对I的循环*/

输出结果。

‘叁’ 如何用C语言实现RSA算法

RSA算法它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字
命名:Ron Rivest, Adi Shamir 和Leonard
Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。

一、RSA算法 :

首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数
p, q, r 这三个数便是 private key

接着, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了
再来, 计算 n = pq
m, n 这两个数便是 public key

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小于 n, 然后分段编码
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码后的资料

解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
于是乎, 解码完毕 等会会证明 c 和 a 其实是相等的 :)

如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b
他如果要解码的话, 必须想办法得到 r
所以, 他必须先对 n 作质因数分解
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难
<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq

证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的

<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上

4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.

这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等于 c, 所以这个过程确实能做到编码解码的功能

二、RSA 的安全性

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解
RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA
的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n
必须选大一些,因具体适用情况而定。

三、RSA的速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。

四、RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公
钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用
One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。

五、RSA的公共模数攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:

C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则

( C1^(-1) )^(-r) * C2^s = P mod n

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。

RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

RSA算法是
第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人
们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA
的重大缺陷是无法从理论上把握它的保密性能
如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600
bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目
前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。

C语言实现

#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1;
b=b+1;
while(b!=1)
{
r=r*a;
r=r%c;
b--;
}
printf("%d\n",r);
return r;
}
void main()
{
int p,q,e,d,m,n,t,c,r;
char s;
printf("please input the p,q: ");
scanf("%d%d",&p,&q);
n=p*q;
printf("the n is %3d\n",n);
t=(p-1)*(q-1);
printf("the t is %3d\n",t);
printf("please input the e: ");
scanf("%d",&e);
if(e<1||e>t)
{
printf("e is error,please input again: ");
scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1) d++;
printf("then caculate out that the d is %d\n",d);
printf("the cipher please input 1\n");
printf("the plain please input 2\n");
scanf("%d",&r);
switch(r)
{
case 1: printf("input the m: "); /*输入要加密的明文数字*/
scanf("%d",&m);
c=candp(m,e,n);
printf("the cipher is %d\n",c);break;
case 2: printf("input the c: "); /*输入要解密的密文数字*/
scanf("%d",&c);
m=candp(c,d,n);
printf("the cipher is %d\n",m);break;
}
getch();
}

‘肆’ 银行的加密算法有几种、有哪几种、主要详情是什么

6种,DES、AES、MD5、RSA、双钥加密、非对称加密。

DES算法
DES(Data Encryption Standard)是一种经典的对称算法。其数据分组长度为64位,使用的密钥为64位,有效密钥长度为56位(有8位用于奇偶校验)。它由IBM公司在70年代开发,经过政府的加密标准筛选后,于1976年11月被美国政府采用,随后被美国国家标准局和美国国家标准协会(American National Standard Institute, ANSI) 承认。
AES算法
1997年1月美国国家标准和技术研究所(NIST)宣布征集新的加密算法。2000年10月2日,由比利时设计者Joan Daemen和Vincent Rijmen设计的Rijndael算法以其优秀的性能和抗攻击能力,最终赢得了胜利,成为新一代的加密标准AES(Advanced Encryption Standard)。
MD5
md5的全称是message-digest algorithm 5(信息-摘要算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向32位的电脑。这三个算法的描述和c语言源代码在internet rfcs 1321中有详细的描述
RSA
RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。

RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互换使用,即:
A=B^e2 mod n;B=A^e1 mod n;
双钥加密
双钥技术就是公共密钥加密PKE(Public Key Encryption)技术,它使用两把密钥,一把公共密钥(Public Key)和一把专用密钥(Private Key),前者用于加密,后者用于解密。这种方法也称为“非对称式”加密方法,它解决了传统加密方法的根本性问题,极大地简化了密钥分发的工作量。它与传统加密方法相结合,还可以进一步增强传统加密方法的可靠性。更为突出的是,利用公共密钥加密技术可以实现数字签名。
什么是非对称加密技术
1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。相对于“对称加密算法”这种方法也叫做“非对称加密算法”。

‘伍’ rsa算法的d值怎么计算

这个用到费马小定理和欧拉公式,这个式子可以这样写:(3d-1)=20*n,其中n是整数,就是说3d-1的值是20的倍数,楼上说的不全面,d=7时,n=1,成立;当n=2时,d=27,这个式子还是成立的,根据RSA原理,求d的值,可以使用以下C语言代码:
int d = 1; while((e*d)%t!=1) d++;
当然了,前提是已经求出了e的值和t的值!
因为新学的RSA算法,也遇到了这个问题,而搜索网络,排前的搜索结果是这个没有解决的,所以写点心得,希望对像我这样新学RSA算法的朋友有些帮助!

‘陆’ IDEA加密算法的C语言实现

1、数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。

2、常见加密算法
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合;
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高;
RC2和 RC4:用变长密钥对大量数据进行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)国际数据加密算法:使用 128 位密钥提供非常强的安全性;
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前 AES 标准的一个实现是 Rijndael 算法;
BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;
其它算法,如ElGamal、Deffie-Hellman、新型椭圆曲线算法ECC等。
比如说,MD5,你在一些比较正式而严格的网站下的东西一般都会有MD5值给出,如安全焦点的软件工具,每个都有MD5。

3、例程:

#include<stdio.h>
#include<process.h>
#include<conio.h>
#include<stdlib.h>
#definemaxim65537
#definefuyi65536
#defineone65536
#defineround8
unsignedintinv(unsignedintxin);
unsignedintmul(unsignedinta,unsignedintb);
voidcip(unsignedintIN[4],unsignedintOUT[4],unsignedintZ[7][10]);
voidkey(unsignedintuskey[9],unsignedintZ[7][10]);
voidde_key(unsignedintZ[7][10],unsignedintDK[7][10]);
voidmain()
{
inti,j,k,x;
unsignedintZ[7][10],DK[7][10],XX[5],TT[5],YY[5];
unsignedintuskey[9];
FILE*fpout,*fpin;
printf(" InputKey");
for(i=1;i<=8;i++)
scanf("%6u",&uskey[i]);
for(i=0;i<9;i++)
uskey[i]=100+i*3;
key(uskey,Z);/*产生加密子密钥*/
de_key(Z,DK);/*计算解密子密钥*/
if((fpin=fopen("ekey.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
for(i=0;i<7;i++)
{
for(j=0;j<10;j++)
fprintf(fpin,"%6u",Z[i][j]);
fprintf(fpin," ");
}
fclose(fpin);

/*XX[1..5]中为明文*/
for(i=0;i<4;i++)XX[i]=2*i+101;
clrscr();
printf("Mingwen%6u%6u%6u%6u ",XX[0],XX[1],XX[2],XX[3]);
if((fpin=(fopen("ideaming.txt","w")))==NULL)
{printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpin,"%6u,%6u,%6u,%6u ",XX[0],XX[1],XX[2],XX[3]);
fclose(fpin);
for(i=1;i<=30000;i++)
cip(XX,YY,Z);/*用密钥Z加密XX中的明文并存在YY中*/
printf(" Mingwen%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
if((fpin=fopen("ideamiwn.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
fclose(fpout);
for(i=1;i<=30000;i++)
cip(YY,TT,DK);/*encipherYYtoTTwithKeyDK*/
printf(" JieMi%6u%6u%6u%6u ",TT[0],TT[1],TT[2],TT[3]);
if((fpout=fopen("dideaout.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",TT[0],TT[1],TT[2],TT[3]);
fclose(fpout);
}
/*此函数执行IDEA算法中的加密过程*/

voidcip(unsignedintIN[4],unsignedintOUT[4],unsignedintZ[7][10])
{
unsignedintr,x1,x2,x3,x4,kk,t1,t2,a;
x1=IN[0];x2=IN[1];x3=IN[2];x4=IN[3];
for(r=1;r<=8;r++)
{
/*对64位的块进行分组运算*/
x1=mul(x1,Z[1][r]);x4=mul(x4,Z[4][r]);
x2=x2+Z[2][r]&one;x3=(x3+Z[3][r])&one;
/*MA结构的函数*/
kk=mul(Z[5][r],(x1^x3));
t1=mul(Z[6][r],(kk+(x2^x4))&one;
/*随机变换PI*/
x1=x1^t1;x4=x4^t2;a=x2^t2;x2=x3^t1;x3=a;
}
/*输出转换*/
OUT[0]=mul(x1,Z[1][round+1]);
OUT[3]=mul(x4,Z[1][round+1]);
OUT[1]=(x3+Z[2][round+1])&one;
OUT[2]=(x2+Z[3][round+1])&one;
}

/*用高低算法上实现乘法运算*/
unsignedintmul(unsignedinta,unsignedintb)
{
longintp;
longunsignedq;
if(a==0)p=maxim-b;
elseif(b==0)p=maxim-a;
else
{
q=(unsignedlong)a*(unsignedlong)b;
p=(q&one)-(q>>16);
if(p<=0)p=p+maxim;
{
return(unsigned)(p&one);
}

/*通过Euclideangcd算法计算xin的倒数*/
unsignedintinv(unsignedintxin)
{
longn1,n2,q,r,b1,b2,t;
if(xin==0)
b2=0;
else
{n1=maxim;n2=xin;b2=1;b1=0;
do{
r=(n1%n2);q=(n1-r)/n2;
if(r==0)
if(b2<0)b2=maxim+b2;
else
{n1=n2;n2=r;
t=b2;
b2=b1-q*b2;b1=t;
}
}while(r!=0);
}
return(unsignedlongint)b2;
}
/*产生加密子密钥Z*/
voidkey(unsignedintuskey[9],unsignedintZ[7][10])
{
unsignedintS[54];
inti,j,r;
for(i=1;i<9;i++)
S[i-1]=uskey[i];
/*shifts*/
for(i=8;i<54;i++)
{
if(i+2)%8==0)/*对于S[14],S[22],...进行计算*/
S[i]=((S[i-7]<<0)^(S[i-14]>>7)&one;
elseif((i+1)%8==0)/*对于S[15],S[23],...进行计算*/
S[i]=((S[i-15]<<9)^(S[i-14]>>7)&one;
else
S[i]=((S[i-7]<<9)^(S[i-6]>>7)&one;
}
/*取得子密钥*/
for(r=1;r<=round+1;r++)
for(j=1;j<7;j++)
Z[j][r]=S[6*(r-1)+j-1];
}

/*计算解子密钥DK*/
voidde_key(unsignedintZ[7][10],unsignedintDK[7][10])
{
intj;
for(j=1;j<=round+1;j++)
{DK[1][round-j+2]=inv(Z[1][j]);
DK[4][round-j+2]=inv(Z[4][j]);
if(i==1|j==round+1)
{
DK[2][round-j+2]=(fuyi-Z[2][j])&one;
DK[3][round-j+2]=(fuyi-Z[3][j])&one;
}
else
{
DK[2][round-j+2]=inv(Z[3][j]);
DK[3][round-j+2]=inv(Z[2][j]);
}
}
for(j=1;j<=round+1;j++)
{
DK[5][round-j+2]=inv(Z[5][j]);
DK[6][round-j+2]=inv(Z[6][j]);
}

}
阅读全文

与rsa解密算法c语言实现相关的资料

热点内容
u盘加密软件费用 浏览:261
中国程序员年死亡率 浏览:837
尚德app发帖从哪里删除 浏览:799
哪里有学中国象棋的app 浏览:115
虚拟机如何编译bin 浏览:831
文件夹蓝屏是怎么回事 浏览:636
奥特佳压缩机日产轩逸 浏览:581
随申办app在哪里下载 浏览:873
哪里下载千图app 浏览:724
php打码嵌入html文档 浏览:455
java如何弹出文件夹选择框选择文件路径 浏览:533
saveaspdf的插件 浏览:25
电脑文件夹右键点击总是未响应 浏览:6
失业的程序员35 浏览:265
windowscmd怎么编译 浏览:277
游戏反编译的apk无法安装 浏览:987
e盘打不开拒绝你访问该文件夹 浏览:51
C程序编译的汇编如何阅读 浏览:743
pdf格式怎样转换成word 浏览:756
如何查看已解压的文件 浏览:416